Manipulative (mathematics education)

Last updated
Cuisenaire rods in a staircase arrangement Cuisenaire staircase.JPG
Cuisenaire rods in a staircase arrangement
Interlocking "multilink" linking cubes Multilink cubes.JPG
Interlocking "multilink" linking cubes
A Polydron icosahedron Polydron 09489.jpg
A Polydron icosahedron

In mathematics education, a manipulative is an object which is designed so that a learner can perceive some mathematical concept by manipulating it, hence its name. The use of manipulatives provides a way for children to learn concepts through developmentally appropriate hands-on experience.

Contents

The use of manipulatives in mathematics classrooms throughout the world grew considerably in popularity throughout the second half of the 20th century. Mathematical manipulatives are frequently used in the first step of teaching mathematical concepts, that of concrete representation. The second and third steps are representational and abstract, respectively.

Mathematical manipulatives can be purchased or constructed by the teacher. Examples of common manipulatives include number lines, Cuisenaire rods; fraction strips, [1] [ better source needed ] blocks, or stacks; base ten blocks (also known as Dienes or multibase blocks); interlocking linking cubes (such as Unifix); construction sets (such as Polydron and Zometool); colored tiles or tangrams; pattern blocks; colored counting chips; [2] numicon tiles; chainable links; abaci such as "rekenreks", and geoboards. Improvised teacher-made manipulatives used in teaching place value include beans and bean sticks, or single popsicle sticks and bundles of ten popsicle sticks.

Virtual manipulatives for mathematics are computer models of these objects. Notable collections of virtual manipulatives include The National Library of Virtual Manipulatives and the Ubersketch.

Multiple experiences with manipulatives provide children with the conceptual foundation to understand mathematics at a conceptual level and are recommended by the NCTM.[ citation needed ]

Some of the manipulatives are now used in other subjects in addition to mathematics. For example, Cuisenaire rods are now used in language arts and grammar,[ citation needed ] and pattern blocks are used in fine arts.[ citation needed ]

In teaching and learning

Mathematical manipulatives play a key role in young children's mathematics understanding and development. These concrete objects facilitate children's understanding of important math concepts, then later help them link these ideas to representations and abstract ideas. For example, there are manipulatives specifically designed to help students learn fractions, geometry and algebra. [3] Here we will look at pattern blocks, interlocking cubes, and tiles and the various concepts taught through using them. This is by no means an exhaustive list (there are so many possibilities!), rather, these descriptions will provide just a few ideas for how these manipulatives can be used.

Base ten blocks

Base Ten Blocks are a great way for students to learn about place value in a spatial way. The units represent ones, rods represent tens, flats represent hundreds, and the cube represents thousands. Their relationship in size makes them a valuable part of the exploration in number concepts. Students are able to physically represent place value in the operations of addition, subtraction, multiplication, and division.

Pattern blocks

One of the ways of making a dodecagon with pattern blocks Wooden pattern blocks dodecagon.JPG
One of the ways of making a dodecagon with pattern blocks

Pattern blocks consist of various wooden shapes (green triangles, red trapezoids, yellow hexagons, orange squares, tan (long) rhombi, and blue (wide) rhombi) that are sized in such a way that students will be able to see relationships among shapes. For example, three green triangles make a red trapezoid; two red trapezoids make up a yellow hexagon; a blue rhombus is made up of two green triangles; three blue rhombi make a yellow hexagon, etc. Playing with the shapes in these ways help children develop a spatial understanding of how shapes are composed and decomposed, an essential understanding in early geometry.

Pattern blocks are also used by teachers as a means for students to identify, extend, and create patterns. A teacher may ask students to identify the following pattern (by either color or shape): hexagon, triangle, triangle, hexagon, triangle, triangle, hexagon. Students can then discuss “what comes next” and continue the pattern by physically moving pattern blocks to extend it. It is important for young children to create patterns using concrete materials like the pattern blocks.

Pattern blocks can also serve to provide students with an understanding of fractions; because pattern blocks are sized to fit to each other (for instance, six triangles make up a hexagon), they provide a concrete experiences with halves, thirds, and sixths.

Adults tend to use pattern blocks to create geometric works of art such as mosaics. There are over 100 different pictures that can be made from pattern blocks. These include cars, trains, boats, rockets, flowers, animals, insects, birds, people, household objects, etc. The advantage of pattern block art is that it can be changed around, added, or turned into something else. All six of the shapes (green triangles, blue (thick) rhombi, red trapezoids, yellow hexagons, orange squares, and tan (thin) rhombi) are applied to make mosaics.

Linking cubes

Interlocking centimeter linking cubes Linking cm cubes 2.JPG
Interlocking centimeter linking cubes

Like pattern blocks, interlocking cubes can also be used for teaching patterns. Students may use the cubes to make long trains of patterns. Like the pattern blocks, the interlocking cubes provide a concrete experience for students to identify, extend, and create patterns. The difference is that a student can also physically decompose a pattern by the unit. For example, if a student made a pattern train that followed this sequence:

Red, blue, blue, blue, red, blue, blue, blue, red, blue, blue, blue, red, blue, blue, ...

the child could then be asked to identify the unit that is repeating (red, blue, blue, blue) and take apart the pattern by each unit.

Also, one can learn addition, subtraction, multiplication and division, guesstimation, measuring, and graphing, perimeter, area, and volume. [4]

Tiles

Tiles are one inch-by-one inch colored squares (red, green, yellow, blue).

Tiles can be used much the same way as interlocking cubes. The difference is that tiles cannot be locked together. They remain as separate pieces, which in many teaching scenarios, may be more ideal.

These three types of mathematical manipulatives can be used to teach the same concepts. It is critical that students learn math concepts using a variety of tools. For example, as students learn to make patterns, they should be able to create patterns using all three of these tools. Seeing the same concept represented in multiple ways as well as using a variety of concrete models will expand students’ understandings.

Number lines

To teach integer addition and subtraction, a number line is often used. A typical positive/negative number line spans from −20 to 20. For a problem such as “−15 + 17”, students are told to “find −15 and count 17 spaces to the right”.

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Hexagon</span> Shape with six sides

In geometry, a hexagon is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Dodecagon</span> Polygon with 12 edges

In geometry, a dodecagon, or 12-gon, is any twelve-sided polygon.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">Cuisenaire rods</span> Learning aids

Cuisenaire rods are mathematics learning aids for students that provide an interactive, hands-on way to explore mathematics and learn mathematical concepts, such as the four basic arithmetical operations, working with fractions and finding divisors. In the early 1950s, Caleb Gattegno popularised this set of coloured number rods created by Georges Cuisenaire (1891–1975), a Belgian primary school teacher, who called the rods réglettes.

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of the plane

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Truncated hexagonal tiling</span>

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

<span class="mw-page-title-main">Rhombitrihexagonal tiling</span> Semiregular tiling of the Euclidean plane

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

<span class="mw-page-title-main">Rhombille tiling</span> Tiling of the plane with 60° rhombi

In geometry, the rhombille tiling, also known as tumbling blocks, reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets of six rhombi meet at their 60° angles.

<span class="mw-page-title-main">Trapezo-rhombic dodecahedron</span> Polyhedron with 6 rhombic and 6 trapezoidal faces

In geometry, the trapezo-rhombic dodecahedron or rhombo-trapezoidal dodecahedron is a convex dodecahedron with 6 rhombic and 6 trapezoidal faces. It has D3h symmetry. A concave form can be constructed with an identical net, seen as excavating trigonal trapezohedra from the top and bottom. It is also called the trapezoidal dodecahedron.

In geometry, a near-miss Johnson solid is a strictly convex polyhedron whose faces are close to being regular polygons but some or all of which are not precisely regular. Thus, it fails to meet the definition of a Johnson solid, a polyhedron whose faces are all regular, though it "can often be physically constructed without noticing the discrepancy" between its regular and irregular faces. The precise number of near-misses depends on how closely the faces of such a polyhedron are required to approximate regular polygons.

<span class="mw-page-title-main">Pattern Blocks</span>

Pattern Blocks are a set of mathematical manipulatives developed in the 1960s. The six shapes are both a play resource and a tool for learning in mathematics, which serve to develop spatial reasoning skills that are fundamental to the learning of mathematics. Among other things, they allow children to see how shapes can be composed and decomposed into other shapes, and introduce children to ideas of tilings. Pattern blocks sets are multiple copies of just six shapes:

<span class="mw-page-title-main">Octadecagon</span> Polygon with 18 edges

In geometry, an octadecagon or 18-gon is an eighteen-sided polygon.

<span class="mw-page-title-main">Virtual manipulatives for mathematics</span>

Virtual math manipulatives are visual representations of concrete math manipulatives. They are digitally accessed through a variety of websites and apps, as well as through tablets, phones and computers. Virtual math manipulatives are modeled after concrete math manipulatives that are commonly used in classrooms to physically represent mathematical concepts and support student understanding of mathematical concepts.

<span class="mw-page-title-main">Montessori sensorial materials</span> Educational aid

Montessori sensorial materials are materials used in the Montessori classroom to help a child develop and refine their five senses. Use of these materials constitutes the next level of difficulty after those of practical life.

<span class="mw-page-title-main">Rep-tile</span> Shape subdivided into copies of itself

In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine.

References

  1. Archived 26 February 2014 at the Wayback Machine [ bare URL ]
  2. "Number and Operations Session 4, Part C: Colored-Chip Models". www.learner.org. Archived from the original on 2009-07-18.
  3. "Best Math Manipulatives for Middle Schoolers".
  4. Archived 28 July 2008 at the Wayback Machine [ bare URL PDF ]

Sources

  • Allsopp, D.H. (2006). "Concrete – Representational – Abstract" . Retrieved 1 September 2006.
  • Krech, B. (2000). "Model with manipulatives". Instructor. 109 (7): 6–7.
  • Van de Walle, J.; Lovin, L.H. (2005). Teaching Student-Centered Mathematics: Grades K-3. Allyn & Bacon.