Marles steering gear

Last updated

Marles steering gear was an hour-glass-and-roller steering gear for mechanically propelled vehicles invented by British inventor and businessman Henry Marles (1871-1955) who also gave his name to his joint-venture Ransome & Marles a major British ball-bearing manufacturer. Aside from ease of use Marles' steering's great appeal to drivers was its lack of backlash.

Contents

Invented in 1913 it became common from the 1920s until the mid 1950s. In USA when power-steering becoming popular in the 1950s it was mainly replaced by worm and recirculating-ball nut steering —which incorporated ball-bearings. In Europe Marles' design was replaced by a general move to rack-and-pinion steering gear.

published in The Auto Motor Journal, 4 December 1919 Marles Steering Gear.jpg
published in The Auto Motor Journal, 4 December 1919
Draglink.JPG

Description

A pair of opposed cams or cam surfaces connected to the steering column operate a transverse rocker shaft carrying the vehicle's steering arm. The point of difference was the use of purely rolling contact and not sliding contact in the meshing elements of a worm-and-follower steering gear. [1]

Ultimately its most popular form was an hour-glass shaped worm which engages with a double-toothed roller follower on the rocker shaft for the steering arm. The result is that substantially the same leverage is provided from one steering lock to the other. [1]

Late development

Marles Variomatic

Marles Variomatic is the trademark name of an automotive power steering system of the 1960s and 70s, which was characterised by its variable steering ratio. It was developed in 1961 by the Adwest Engineering Co Ltd of Reading, England, in conjunction with the Bendix Corporation. The Adwest product was fitted to several British luxury automobiles of the era, including; the Aston Martin V8, Daimler Sovereign, Jaguar 420 and Rover P6B 3500S.

Overview

The Variomatic is essentially a refinement of the power assisted "cam and roller" type of steering, being referred to instead as "hour glass and roller". The steering box contains an "hour glass" cam machined with a varying helix angle to provide the variable steering ratio. [2] In common with other power steering systems, control of power assistance in response to steering inputs is via a hydraulic control valve in the input shaft of the cam. Pressurised hydraulic fluid is supplied to the system by a separate hydraulic pump.

Steering box

The hydraulic assistance is supplied by a servo piston operating in a cylinder integral with the steering box casting. The teeth of a rack projecting from the piston mesh with a sector of a spur gear machined into the sector shaft. A roller in the sector shaft meshes with the helical track on the cam, and the two together are responsible for providing the variable ratio. No external lockstops are provided as they are incorporated into the steering box.

Control valve

In common with other power steering systems, the control valve is of the rotary type and consists of a valve rotor and torsion bar. The valve rotor is the input shaft to the steering gear and has six longitudinal grooves machined into its outer surface. When no load is applied to the steering wheel, these grooves lie between six grooves in the valve sleeve and no hydraulic assistance is applied.

When steering effort is applied at the wheel it is transmitted to the rotor, which transmits the effort to the hour glass cam by means of the torsion bar. The rotor is normally centred in its sleeve by the torsion bar but manual steering effort twists the torsion bar, permitting the rotor to turn within its sleeve, opening the way for hydraulic fluid pressure to be applied to one or other side of the servo piston, thus assisting in turning the front wheels.

Pressure pump

[3] The hydraulic pump is of the vaned rotor type, typically of Saginaw manufacture, and is connected to the steering box via flexible feed and return hoses. The fluid reservoir is incorporated in the pump's end cover. Typical system operating pressures are in the range 7.8 - 8.8 MPa, the operating medium being automatic transmission fluid.

Operation

The varying pitch of the cam results in the variable steering ratio, with the lowest gearing being at the straight ahead, rising rapidly to either lock. The rise in gearing (which in the Jaguar 420 was equivalent to a drop in ratio from 21.6:1 to 13:1) occurs almost entirely within the first half turn of the steering wheel from the straight ahead position. The effect is to give very light and relaxed steering at the straight ahead, with increased reaction when cornering.

Benefits and drawbacks

The major benefit of the Variomatic system is the reduction in the amount of "arm twirling" and effort required when steering, particularly when a lot of cornering is involved. For example, the Variomatic system fitted as an option to the Jaguar 420 required only 2-7/8 turns of the steering wheel lock-to-lock, which compares favourably with 4-1/4 turns lock-to-lock for the manual Burman F.3 recirculating ball system that was standard fitment on the 420, and 3-1/4 [4] turns for the constant ratio Burman power steering system optional on the 420's predecessor, the Jaguar S-Type.

Whilst advanced for its time, the Variomatic system did have certain drawbacks. It was more complicated and expensive than a constant ratio power assisted system. The Variomatic system was also criticised for feeling too light at high speed, when greater weighting tends to give the driver more confidence in making fine steering adjustments. Later systems by other manufacturers would adjust the behaviour of the steering in reaction to road speed.

Crown bottle top

Henry Marles also patented an improved crown bottle top in 1906 and bottles no longer required a special opener. [5]

Related Research Articles

<span class="mw-page-title-main">Pump</span> Device that imparts energy to the fluids by mechanical action

A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy.

<span class="mw-page-title-main">Continuously variable transmission</span> Automotive transmission technology

A continuously variable transmission (CVT) is an automated transmission that can change through a continuous range of gear ratios. This contrasts with other transmissions that provide a limited number of gear ratios in fixed steps. The flexibility of a CVT with suitable control may allow the engine to operate at a constant angular velocity while the vehicle moves at varying speeds.

<span class="mw-page-title-main">Jaguar Mark X</span> Motor vehicle

The Jaguar Mark X, later renamed the Jaguar 420G, was British manufacturer Jaguar's top-of-the-range saloon car for a decade, from 1961 to 1970. The large, luxurious Mark X not only succeeded the Mark IX as the company's top saloon model, but radically broke with both its predecessor's styling and technology.

<span class="mw-page-title-main">Hydraulic machinery</span> Type of machine that uses liquid fluid power to perform work

Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.

Power steering is a system for reducing a driver's effort to turn a steering wheel of a motor vehicle, by using a power source to assist steering.

<span class="mw-page-title-main">Linear actuator</span> Actuator that creates motion in a straight line

A linear actuator is an actuator that creates linear motion, in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.

<span class="mw-page-title-main">Jaguar S-Type (1963)</span> Motor vehicle

The Jaguar S-Type is a saloon car produced by Jaguar Cars in the United Kingdom from 1963 to 1968. Announced 30 September 1963 it was a technically more sophisticated development of the Mark 2, offering buyers a more luxurious alternative without the size and expense of the Mark X. The S-Type sold alongside the Mark 2, as well as the Jaguar 420 following its release in 1966. A retro-styled vehicle with the same name was also produced, based on the design of the original S-Type vehicles.

<span class="mw-page-title-main">Motor drive</span>

Motor drive means a system that includes a motor. An adjustable speed motor drive means a system that includes a motor that has multiple operating speeds. A variable speed motor drive is a system that includes a motor and is continuously variable in speed. If the motor is generating electrical energy rather than using it – this could be called a generator drive but is often still referred to as a motor drive.

<span class="mw-page-title-main">Hydraulic brake</span> Arrangement of braking mechanism

A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism.

<span class="mw-page-title-main">Maserati Khamsin</span> Italian grand touring car

The Maserati Khamsin is a grand tourer produced by Italian automobile manufacturer Maserati between 1974 and 1982. The Khamsin was sold alongside the DeTomaso-based Maserati Kyalami - also a V8 GT car - between 1976 and 1982.

<span class="mw-page-title-main">Axial piston pump</span>

An axial piston pump is a positive displacement pump that has a number of pistons in a circular array within a cylinder block.

DIRAVI is the name given by Citroën to its proprietary power steering system, first seen in 1970.

<span class="mw-page-title-main">Hydraulic motor</span> Machine converting flow into rotation

A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.

The following outline is provided as an overview of and topical guide to automobiles:

<span class="mw-page-title-main">Hydraulic pump</span> Mechanical power source

A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

<span class="mw-page-title-main">Jaguar 420 and Daimler Sovereign (1966–1969)</span> Motor vehicle

The Jaguar 420 and its Daimler Sovereign equivalent were introduced at the October 1966 London Motor Show and produced for two years as the ultimate expression of a series of "compact sporting saloons" offered by Jaguar throughout that decade, all of which shared the same wheelbase. Developed from the Jaguar S-Type, the 420 cost around £200 more than that model and effectively ended buyer interest in it, although the S-Type continued to be sold alongside the 420/Sovereign until both were supplanted by the Jaguar XJ6 late in 1968.

Hydrosteer was the name given by George Kent Ltd and Cam Gears Limited through Hydrosteer Limited of Luton, England, to its automotive power steering system. Initially Hydrosteer manufactured the Ross-Link system for commercial vehicles from 1953 under licence from Ross Gear and Tool of U.S.A. Their own product available from 1961 was based on a cam and peg system and was characterised by its fully integrated design and variable steering ratio. This configuration provided automotive manufacturers with a fairly simple design modification to provide a power steering option for cars fitted with a conventional cam and peg steering box. It was fitted to several, mainly British, luxury automobiles of the era. Production continued up to 1973, with just over 105,000 units being produced. As a "first generation" assistance system, applications were somewhat varied in their tuning of the many system dynamics to the specific vehicle. The system fell out of use as powered rack and pinion steering systems gained in popularity.

<span class="mw-page-title-main">Subaru Impreza (second generation)</span> Motor vehicle

The second generation of the Subaru Impreza compact car was introduced in 2000 and manufactured up to 2007 by Subaru in Ota, Gunma, Japan, in both sedan and five-door wagon bodystyles, as well as two intermediate facelifts throughout its lifespan.

Variable valve lift (VVL) is an automotive piston engine technology which varies the height a valve opens in order to improve performance, fuel economy or emissions. There are two main types of VVL: discrete, which employs fixed valve lift amounts, and continuous, which is able to vary the amount of lift. Continuous valve lift systems typically allow for the elimination of the throttle valve.

References

  1. 1 2 M J Nunney, Light and Heavy Vehicle Technology, Fourth edition, Routledge 2007 ISBN   9781136387579
  2. Jaguar 420 Service Manual, Jaguar Cars Ltd, Publication No. E/143/2
  3. Ball, Kenneth. Jaguar S Type, 420 1963-68 Owners Workshop Manual, Autobook 703, Autobooks, ISBN   0-85147-113-7
  4. Jaguar S-Type & 420 - 'Road Test' Limited Edition, Brooklands Books, ISBN   1-85520-345-6
  5. Chemical Abstracts, Volume 1, American Chemical Society 1907

Further reading