Maximal torus

Last updated

In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups.

Contents

A torus in a compact Lie group G is a compact, connected, abelian Lie subgroup of G (and therefore isomorphic to [1] the standard torus Tn). A maximal torus is one which is maximal among such subgroups. That is, T is a maximal torus if for any torus T containing T we have T = T. Every torus is contained in a maximal torus simply by dimensional considerations. A noncompact Lie group need not have any nontrivial tori (e.g. Rn).

The dimension of a maximal torus in G is called the rank of G. The rank is well-defined since all maximal tori turn out to be conjugate. For semisimple groups the rank is equal to the number of nodes in the associated Dynkin diagram.

Examples

The unitary group U(n) has as a maximal torus the subgroup of all diagonal matrices. That is,

T is clearly isomorphic to the product of n circles, so the unitary group U(n) has rank n. A maximal torus in the special unitary group SU(n) ⊂ U(n) is just the intersection of T and SU(n) which is a torus of dimension n  1.

A maximal torus in the special orthogonal group SO(2n) is given by the set of all simultaneous rotations in any fixed choice of n pairwise orthogonal planes (i.e., two dimensional vector spaces). Concretely, one maximal torus consists of all block-diagonal matrices with diagonal blocks, where each diagonal block is a rotation matrix. This is also a maximal torus in the group SO(2n+1) where the action fixes the remaining direction. Thus both SO(2n) and SO(2n+1) have rank n. For example, in the rotation group SO(3) the maximal tori are given by rotations about a fixed axis.

The symplectic group Sp(n) has rank n. A maximal torus is given by the set of all diagonal matrices whose entries all lie in a fixed complex subalgebra of H.

Properties

Let G be a compact, connected Lie group and let be the Lie algebra of G. The first main result is the torus theorem, which may be formulated as follows: [2]

Torus theorem: If T is one fixed maximal torus in G, then every element of G is conjugate to an element of T.

This theorem has the following consequences:

Root system

If T is a maximal torus in a compact Lie group G, one can define a root system as follows. The roots are the weights for the adjoint action of T on the complexified Lie algebra of G. To be more explicit, let denote the Lie algebra of T, let denote the Lie algebra of , and let denote the complexification of . Then we say that an element is a root for G relative to T if and there exists a nonzero such that

for all . Here is a fixed inner product on that is invariant under the adjoint action of connected compact Lie groups.

The root system, as a subset of the Lie algebra of T, has all the usual properties of a root system, except that the roots may not span . [6] The root system is a key tool in understanding the classification and representation theory of G.

Weyl group

Given a torus T (not necessarily maximal), the Weyl group of G with respect to T can be defined as the normalizer of T modulo the centralizer of T. That is,

Fix a maximal torus in G; then the corresponding Weyl group is called the Weyl group of G (it depends up to isomorphism on the choice of T).

The first two major results about the Weyl group are as follows.

We now list some consequences of these main results.

The representation theory of G is essentially determined by T and W.

As an example, consider the case with being the diagonal subgroup of . Then belongs to if and only if maps each standard basis element to a multiple of some other standard basis element , that is, if and only if permutes the standard basis elements, up to multiplication by some constants. The Weyl group in this case is then the permutation group on elements.

Weyl integral formula

Suppose f is a continuous function on G. Then the integral over G of f with respect to the normalized Haar measure dg may be computed as follows:

where is the normalized volume measure on the quotient manifold and is the normalized Haar measure on T. [10] Here Δ is given by the Weyl denominator formula and is the order of the Weyl group. An important special case of this result occurs when f is a class function, that is, a function invariant under conjugation. In that case, we have

Consider as an example the case , with being the diagonal subgroup. Then the Weyl integral formula for class functions takes the following explicit form: [11]

Here , the normalized Haar measure on is , and denotes the diagonal matrix with diagonal entries and .

See also

Related Research Articles

Lie group Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract, generic concept of multiplication and the taking of inverses (division). Combining these two ideas, one obtains a continuous group where points can be multiplied together, and their inverse can be taken. If, in addition, the multiplication and taking of inverses are defined to be smooth (differentiable), one obtains a Lie group.

Orthogonal group Group of isometries of a Euclidean vector space or, more generally, of a vector space equipped with a quadratic form

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n×n orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.

Weyl group Subgroup of a root systems isometry group

In mathematics, in particular the theory of Lie algebras, the Weyl group of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.

Adjoint representation

In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

Compact group Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology is compact. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

Reductive group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing.

In mathematics, the Iwasawa decomposition of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix. It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.

Cartan subalgebra Nilpotent subalgebra of a Lie algebra


In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

Semisimple Lie algebra Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

Hermitian symmetric space Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ-adic cohomology with compact support, introduced by Pierre Deligne and George Lusztig (1976).

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In mathematics, Kostant's convexity theorem, introduced by Bertram Kostant (1973), states that the projection of every coadjoint orbit of a connected compact Lie group into the dual of a Cartan subalgebra is a convex set. It is a special case of a more general result for symmetric spaces. Kostant's theorem is a generalization of a result of Schur (1923), Horn (1954) and Thompson (1972) for hermitian matrices. They proved that the projection onto the diagonal matrices of the space of all n by n complex self-adjoint matrices with given eigenvalues Λ = is the convex polytope with vertices all permutations of the coordinates of Λ.

Borel–de Siebenthal theory

In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.

Complexification (Lie group) universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In mathematics, the closed-subgroup theorem is a theorem in the theory of Lie groups. It states that if H is a closed subgroup of a Lie group G, then H is an embedded Lie group with the smooth structure agreeing with the embedding. One of several results known as Cartan's theorem, it was first published in 1930 by Élie Cartan, who was inspired by John von Neumann's 1929 proof of a special case for groups of linear transformations.

Glossary of Lie groups and Lie algebras Wikipedia glossary

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References

  1. Hall 2015 Theorem 11.2
  2. Hall 2015 Lemma 11.12
  3. Hall 2015 Theorem 11.9
  4. Hall 2015 Theorem 11.36 and Exercise 11.5
  5. Hall 2015 Proposition 11.7
  6. Hall 2015 Section 11.7
  7. Hall 2015 Theorem 11.36
  8. Hall 2015 Theorem 11.36
  9. Hall 2015 Theorem 11.39
  10. Hall 2015 Theorem 11.30 and Proposition 12.24
  11. Hall 2015 Example 11.33