Mei-Ching Fok

Last updated
Mei-Ching Fok
Fok Mei-Ching.jpg
Alma mater Chinese University of Hong Kong
Eastern Michigan University
University of Michigan
Scientific career
Institutions Goddard Space Flight Center
Universities Space Research Association
Marshall Space Flight Center

Mei-Ching Hannah Fok is a planetary scientist at the Goddard Space Flight Center. She was awarded the NASA Exceptional Scientific Achievement Medal in 2011 and elected a Fellow of the American Geophysical Union in 2019. She has worked on the IMAGE, Van Allen Probes and TWINS missions.

Contents

Early life and education

Fok studied physics at the Chinese University of Hong Kong. [1] She was awarded her bachelor's degree in 1980, and remained there to study for a diploma in Education. [1] She earned her diploma in 1984, then moved to Eastern Michigan University for her graduate studies. In 1987, Fok graduated from Eastern Michigan University with a master's degree in physics. She joined University of Michigan, Ann Arbor for her doctorate, which she completed in 1993. [1]

Research and career

In 1993, Fok joined the Marshall Space Flight Center as a Research Associate. She moved to the Universities Space Research Association in 1995, where she spent six years as a staff scientist. In 2001, she joined the Goddard Space Flight Center. She studies the Van Allen radiation belts during geomagnetic storms and active times. She has studied the ring current and their role in magnetosphereionosphere coupling. [2]

Example of her Neutral Atom Imaging work Fok Mei-Ching work.jpg
Example of her Neutral Atom Imaging work

Fok developed the Comprehensive Inner Magnetosphere–Ionosphere model (CIMI), a bounce-averaged kinetic model that can calculate the plasma fluxes within the ring current regions of the radiation belt. [3] [4] Fok's CIMI model is currently being used to predict the fluxes observed by the Van Allen Probes. [5] CIMI takes in information about magnetic fields, electric potentials, quiet-time conductances and solar wind speed, and outputs information about ion fluxes, plasmasphere density and ionospheric potentials. [3] Using the model, Fok found that the main phase pressure of the magnetosphere was not created by the solar wind, but instead dominated by energetic protons from the plasmasphere. [6] [7] Fok was awarded the NASA Exceptional Scientific Achievement Medal for her development of CIMI. Her citation read: "For creation of state-of-the-art numerical models that account for the complex couplings between the solar wind, radiation belts, ring current, ionosphere and magnetosphere". [8]

Alongside creating the CIMI model, Fok works on Neutral Atom Imaging, and her modelling tools were used in both the IMAGE and TWINS missions. [1]

Awards and honours

Her awards and honours include;

Selected publications

Her publications include;

Related Research Articles

<span class="mw-page-title-main">Magnetosphere</span> Region around an astronomical object in which its magnetic field affects charged particles

In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynamo.

<span class="mw-page-title-main">Whistler (radio)</span> Very low frequency EM waves generated by lightning

A whistler is a very low frequency (VLF) electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with maximum frequencies usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other. They undergo dispersion of several kHz due to the slower velocity of the lower frequencies through the plasma environments of the ionosphere and magnetosphere. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types.

<span class="mw-page-title-main">Magnetosphere of Saturn</span>

The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter. The magnetopause, the boundary between Saturn's magnetosphere and the solar wind, is located at a distance of about 20 Saturn radii from the planet's center, while its magnetotail stretches hundreds of Saturn radii behind it.

<span class="mw-page-title-main">Cluster II (spacecraft)</span> European Space Agency mission

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. As of March 2023, its mission has been extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

<span class="mw-page-title-main">Birkeland current</span> Currents flowing along geomagnetic field lines

A Birkeland current is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field and by bulk motions of plasma through the magnetosphere. The strength of the Birkeland currents changes with activity in the magnetosphere. Small scale variations in the upward current sheets accelerate magnetospheric electrons which, when they reach the upper atmosphere, create the Auroras Borealis and Australis. In the high latitude ionosphere, the Birkeland currents close through the region of the auroral electrojet, which flows perpendicular to the local magnetic field in the ionosphere. The Birkeland currents occur in two pairs of field-aligned current sheets. One pair extends from noon through the dusk sector to the midnight sector. The other pair extends from noon through the dawn sector to the midnight sector. The sheet on the high latitude side of the auroral zone is referred to as the Region 1 current sheet and the sheet on the low latitude side is referred to as the Region 2 current sheet.

<span class="mw-page-title-main">Plasmasphere</span> Region of Earths magnetosphere consisting of cool plasma

The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere. The outer boundary of the plasmasphere is known as the plasmapause, which is defined by an order of magnitude drop in plasma density. In 1963 American scientist Don Carpenter and Soviet astronomer Konstantin Gringauz proved the plasmasphere and plasmapause's existence from the analysis of very low frequency (VLF) whistler wave data. Traditionally, the plasmasphere has been regarded as a well behaved cold plasma with particle motion dominated entirely by the geomagnetic field and, hence, co-rotating with the Earth.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

Dynamics Explorer was a NASA mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two unmanned satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Injun (satellite)</span>

The Injun program was a series of six satellites designed and built by researchers at the University of Iowa to observe various radiation and magnetic phenomena in the ionosphere and beyond.

<span class="mw-page-title-main">Adolfo Figueroa-Viñas</span> Puerto Rican astrophysicist

Adolfo Figueroa-Viñas is the first Puerto Rican astrophysicist at the National Aeronautics and Space Administration (NASA) and is an expert in solar and space plasma physics at the Heliophysics Science Division. As a staff scientist his research interests include studying plasma kinetic physics and magnetohydrodynamics of the solar wind, heliosphere, shock waves, MHD and kinetic simulation of plasma instabilities, and turbulent processes associated with space, solar and astrophysical plasmas.

<span class="mw-page-title-main">Hiss (electromagnetic)</span> An electromagnetic wave phenomenon

Electromagnetic hiss is a naturally occurring Extremely Low Frequency/Very Low Frequency electromagnetic wave that is generated in the plasma of either the Earth's ionosphere or magnetosphere. Its name is derived from its incoherent, structureless spectral properties which, when played through an audio system, sound like white noise.

<span class="mw-page-title-main">Margaret G. Kivelson</span> American geophysicist, planetary scientist (born 1928)

Margaret Galland Kivelson is an American space physicist, planetary scientist, and distinguished professor emerita of space physics at the University of California, Los Angeles. From 2010 to the present, concurrent with her appointment at UCLA, Kivelson has been a research scientist and scholar at the University of Michigan. Her primary research interests include the magnetospheres of Earth, Jupiter, and Saturn.

<span class="mw-page-title-main">SMILE (spacecraft)</span> Chinese–European satellite studying Earths magnetosphere

Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a planned joint venture mission between the European Space Agency and the Chinese Academy of Sciences. SMILE will image for the first time the magnetosphere of the Sun in soft X-rays and UV during up to 40 hours per orbit, improving our understanding of the dynamic interaction between the solar wind and Earth's magnetosphere. The prime science questions of the SMILE mission are

Richard Mansergh Thorne was an American physicist and a distinguished professor in the department of atmospheric and oceanic sciences at UCLA. He was known for his contributions to space plasma physics. He was a fellow of the American Geophysical Union.

<span class="mw-page-title-main">Nancy Crooker</span> American astrophysicist

Nancy U. Crooker is an American physicist and professor emerita of space physics at Boston University, Massachusetts. She has made major contributions to the understanding of geomagnetism in the Earth's magnetosphere and the heliosphere, particularly through the study of interplanetary electrons and magnetic reconnection.

<span class="mw-page-title-main">George Siscoe</span>

George L. Siscoe was an American physicist and professor emeritus of space physics at Boston University. He made major contributions to the understanding of the Earth's magnetosphere and the heliosphere, particularly in helping to establishing the field of space weather and the term heliophysics - a term which is now standard use.

Lynn Kistler is a physicist known for her research on the magnetosphere that protects Earth from radiation from space.

<span class="mw-page-title-main">Patricia Reiff</span> Space physicist

Patricia Reiff is an American space physicist at Rice University, known for her research on space weather and for engaging the public about science.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">James Dungey</span> British space scientist

James Wynne "Jim" Dungey (1923–2015) was a British space scientist who was pivotal in establishing the field of space weather and made significant contributions to the fundamental understanding of plasma physics.

References

  1. 1 2 3 4 "Bio – Mei-Ching H Fok". science.gsfc.nasa.gov. Retrieved 2019-08-25.
  2. Mei-ching Fok – Role of Ring Current in M–I Coupling , retrieved 2019-08-25
  3. 1 2 Buzulukova, Natalia (2017-12-01). Extreme Events in Geospace: Origins, Predictability, and Consequences. Elsevier. ISBN   9780128127018.
  4. Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D. (2014). "The Comprehensive Inner Magnetosphere–Ionosphere Model". Journal of Geophysical Research: Space Physics. 119 (9): 7522–7540. Bibcode:2014JGRA..119.7522F. doi: 10.1002/2014JA020239 . ISSN   2169-9402.
  5. Buzulukova, Natalia (2017-12-01). Extreme Events in Geospace: Origins, Predictability, and Consequences. Elsevier. ISBN   9780128127018.
  6. "How Plasma From Superstorms Affects Near-Earth Space". ScienceDaily. Retrieved 2019-08-25.
  7. "Model Reveals How Plasma from Superstorms Affects Near-Earth Space". phys.org. Retrieved 2019-08-25.
  8. 1 2 "Awards Won – Geospace Physics Laboratory – 673". science.gsfc.nasa.gov. Retrieved 2019-08-25.
  9. "2019 Class of AGU Fellows Announced". Eos. 15 August 2019. Retrieved 2019-08-25.