Membrane oxygenator

Last updated
A MAQUET hollow fiber membrane oxygenator Oksigenator QUADROX kompanii MAQUET.jpg
A MAQUET hollow fiber membrane oxygenator

A membrane oxygenator is a device used to add oxygen to, and remove carbon dioxide from the blood. It can be used in two principal modes: to imitate the function of the lungs in cardiopulmonary bypass (CPB), and to oxygenate blood in longer term life support, termed extracorporeal membrane oxygenation (ECMO). A membrane oxygenator consists of a thin gas-permeable membrane separating the blood and gas flows in the CPB circuit; oxygen diffuses from the gas side into the blood, and carbon dioxide diffuses from the blood into the gas for disposal.

Contents

History

The history of the oxygenator, or artificial lung, dates back to 1885, with the first demonstration of a disc oxygenator, on which blood was exposed to the atmosphere on rotating discs by Von Frey and Gruber. These pioneers noted the dangers of blood streaming, foaming and clotting. In the 1920s and 30s, research into developing extracorporeal oxygenation continued. Working independently, Brukhonenko in the USSR and John Heysham Gibbon in the US demonstrated the feasibility of extracorporeal oxygenation. Brukhonenko used excised dog lungs, while Gibbon used a direct-contact drum-type oxygenator, perfusing cats for up to 25 minutes in the 1930s.

Gibbon's pioneering work was rewarded in May 1953 with the first successful cardiopulmonary bypass operation. The oxygenator was of the stationary film type, in which oxygen was exposed to a film of blood as it flowed over a series of stainless steel plates.

The disadvantages of direct contact between the blood and air were well recognized, and the less traumatic membrane oxygenator was developed to overcome these. The first membrane artificial lung was demonstrated in 1955 by the group led by Willem Kolff, and in 1956 the first disposable-membrane oxygenator removed the need for time-consuming cleaning before re-use. No patent was filed as Kolff believed that doctors should make technology available to all, without mind to profit.[ citation needed ]

The first membrane artificial lungs were composed of large flat sheets of thin silicone rubber used to separate blood and gas. Dr. Kolff recognized the need for a more compact lung design and constructed the first coiled lung design using polyethylene. However, these first designs were impractical due to high resistance and large priming volume. Inspired by Kolff's design, Theodor Kolobow designed the first successful spiral coil membrane lung in the laboratory of George Henry Alexander Clowes using a vinyl fiberglass screen to allow gas to more easily flow in the tube. For these and other innovations, including applying slight suction to form a tight seal and prevent hypobaric gas emboli, NIH was issued a patent in 1970 for the silicon rubber spiral coil membrane lung invented by Dr. Kolobow. [1]

Kolobow, with the assistance of Dr. Warren Zapol and NIH veterinarian Joseph Price, attempted the first in vivo experiments using the spiral membrane artificial lung on canines and lambs. The team went on to invent the first artificial placenta in 1967. [2] [1]

The early artificial lungs used relatively impermeable polyethylene or Teflon homogeneous membranes, and it was not until more highly permeable silicone rubber membranes were introduced in the 1960s (and as hollow fibres in 1971) that the membrane oxygenator became commercially successful. The introduction of microporous hollow fibres with very low resistance to mass transfer revolutionized the design of membrane modules, as the limiting factor to oxygenator performance became the blood resistance. Current designs of oxygenator typically use an extraluminal flow regime, where the blood flows outside the gas-filled hollow fibers, for short term life support, while only the homogeneous membranes are approved for long term use.

See also

Related Research Articles

<span class="mw-page-title-main">Artificial heart</span> Mechanical device which replaces the heart

An artificial heart is a device that replaces the heart. Artificial hearts are typically used to bridge the time to heart transplantation, or to permanently replace the heart in the case that a heart transplant is impossible. Although other similar inventions preceded it from the late 1940s, the first artificial heart to be successfully implanted in a human was the Jarvik-7 in 1982, designed by a team including Willem Johan Kolff, William DeVries and Robert Jarvik.

Apnea, BrE: apnoea, is the temporal cessation of breathing. During apnea, there is no movement of the muscles of inhalation, and the volume of the lungs initially remains unchanged. Depending on how blocked the airways are, there may or may not be a flow of gas between the lungs and the environment, but if there's sufficient flow, gas exchange within the lungs and cellular respiration wouldn't be severely affected. Voluntarily doing this is called holding one's breath. Apnea may first be diagnosed in childhood, and it is recommended to consult an ENT specialist, allergist or sleep physician to discuss symptoms when noticed; malformation and/or malfunctioning of the upper airways may be observed by an orthodontist.

<span class="mw-page-title-main">Cardiopulmonary bypass</span> Technique that temporarily takes over the function of the heart and lungs during surgery

Cardiopulmonary bypass (CPB) is a technique in which a machine temporarily takes over the function of the heart and lungs during surgery, maintaining the circulation of blood and oxygen to the body. The CPB pump itself is often referred to as a heart–lung machine or "the pump". Cardiopulmonary bypass pumps are operated by perfusionists. CPB is a form of extracorporeal circulation. Extracorporeal membrane oxygenation is generally used for longer-term treatment.

<i>Experiments in the Revival of Organisms</i> 1940 film

Experiments in the Revival of Organisms is a 1940 motion picture directed by David Yashin which documents Soviet research into the resuscitation of clinically dead organisms.

<span class="mw-page-title-main">Extracorporeal membrane oxygenation</span> Technique of providing both cardiac and respiratory support

Extracorporeal membrane oxygenation (ECMO), also known as extracorporeal life support (ECLS), is an extracorporeal technique of providing prolonged cardiac and respiratory support to persons whose heart and lungs are unable to provide an adequate amount of gas exchange or perfusion to sustain life. The technology for ECMO is largely derived from cardiopulmonary bypass, which provides shorter-term support with arrested native circulation. The device used is a membrane oxygenator, also known as an artificial lung.

<span class="mw-page-title-main">Acute respiratory distress syndrome</span> Human disease

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath (dyspnea), rapid breathing (tachypnea), and bluish skin coloration (cyanosis). For those who survive, a decreased quality of life is common.

<span class="mw-page-title-main">Hemodialysis</span> Medical procedure for purifying blood

Hemodialysis, also spelled haemodialysis, or simply dialysis, is a process of purifying the blood of a person whose kidneys are not working normally. This type of dialysis achieves the extracorporeal removal of waste products such as creatinine and urea and free water from the blood when the kidneys are in a state of kidney failure. Hemodialysis is one of three renal replacement therapies. An alternative method for extracorporeal separation of blood components such as plasma or cells is apheresis.

An extracorporeal is a medical procedure which is performed outside the body. Extracorporeal devices are the artificial organs that remain outside the body while treating a patient. Extracorporeal devices are useful in hemodialysis and cardiac surgery.

<span class="mw-page-title-main">Artificial womb</span> Device that would allow for extracorporeal pregnancy

An artificial womb or artificial uterus is a device that would allow for extracorporeal pregnancy by growing a fetus outside the body of an organism that would normally carry the fetus to term.

<span class="mw-page-title-main">Willem Johan Kolff</span> Dutch medical researcher (1911–2009)

Willem Johan "Pim" Kolff was a pioneer of hemodialysis, artificial heart, as well as in the entire field of artificial organs. Willem was a member of the Kolff family, an old Dutch patrician family. He made his major discoveries in the field of dialysis for kidney failure during the Second World War. He emigrated in 1950 to the United States, where he obtained US citizenship in 1955, and received a number of awards and widespread recognition for his work.

The Organ Care System (OCS) is a medical device designed by Transmedics to allow donor organs to be maintained for longer periods of time prior to transplant. The system mimics the elements of human physiology and keeps organs in an environment and temperature similar to the human body. The system allows for organ preservation that last longer than the standard organ preservation method of putting organs on ice, static cold storage, which can cause cold ischemia. When put on ice, organs begin to deteriorate about three to four hours after retrieval.

<span class="mw-page-title-main">Oxygenator</span> Medical equipment

An oxygenator is a medical device that is capable of exchanging oxygen and carbon dioxide in the blood of human patient during surgical procedures that may necessitate the interruption or cessation of blood flow in the body, a critical organ or great blood vessel. These organs can be the heart, lungs or liver, while the great vessels can be the aorta, pulmonary artery, pulmonary veins or vena cava.

An artificial lung (AL) is a prosthetic device that provides oxygenation of blood and removal of carbon dioxide from the blood. The AL is intended to take over some of the functionality of biological lungs. It is different from a heart-lung machine in that it is external and designed to take over the functions of the lungs for long periods of time rather than on a temporary basis.

Minimized extracorporeal circulation (MECC) is a kind of cardiopulmonary bypass, a part of heart surgery. The introduction of extracorporeal circulation has facilitated open heart surgery. The development of modern techniques in extracorporeal circulation is the result of the combined efforts of physiologists, physicians, and engineers. During the first half of the 20th century scientists refined their methods in the development of extracorporeal circulation so that it could be used in humans.

<span class="mw-page-title-main">Clifford Kwan-Gett</span>

Clifford Stanley Kwan-Gett is an Australian-born Chinese American engineer, physician, and artificial heart pioneer.

Robert (Bob) Bartlett is an American physician and medical researcher who is credited with developing a lifesaving heart-lung technology known as extracorporeal membrane oxygenation (ECMO). He is an emeritus professor of surgery at the University of Michigan Medical School.

Extracorporeal cardiopulmonary resuscitation is a method of cardiopulmonary resuscitation (CPR) that passes the patient's blood through a machine in a process to oxygenate the blood supply. A portable extracorporeal membrane oxygenation (ECMO) device is used as an adjunct to standard CPR. A patient who is deemed to be in cardiac arrest refractory to CPR has percutaneous catheters inserted into the femoral vein and artery. Theoretically, the application of ECPR allows for the return of cerebral perfusion in a more sustainable manner than with external compressions alone. By attaching an ECMO device to a person who has acutely undergone cardiovascular collapse, practitioners can maintain end-organ perfusion whilst assessing the potential reversal of causal pathology, with the goal of improving long-term survival and neurological outcomes.

<span class="mw-page-title-main">Hollow fiber membrane</span> Class of artificial membranes containing a semi-permeable hollow fiber barrier

Hollow fiber membranes (HFMs) are a class of artificial membranes containing a semi-permeable barrier in the form of a hollow fiber. Originally developed in the 1960s for reverse osmosis applications, hollow fiber membranes have since become prevalent in water treatment, desalination, cell culture, medicine, and tissue engineering. Most commercial hollow fiber membranes are packed into cartridges which can be used for a variety of liquid and gaseous separations.

<span class="mw-page-title-main">Warren Zapol</span> American anesthesiologist (1942–2021)

Warren M. Zapol was the emeritus Anesthetist-in-Chief at Massachusetts General Hospital (1994-2008) and the Reginald Jenney Distinguished Professor of Anaesthesia at Harvard Medical School. From 1994 to 2008, Zapol served as anesthetist-in-chief at MGH and was the director of the MGH Anesthesia Center for Critical Care Research until his death.

<span class="mw-page-title-main">Theodor Kolobow</span> American physician, scientist

Theodor Kolobow was an American physician, scientist, physiologist, and inventor of medical devices, including the membrane oxygenator, common to most modern ventilators.

References

  1. 1 2 Trahanas, John M.; Kolobow, Mary Anne; Hardy, Mark A.; Berra, Lorenzo; Zapol, Warren M.; Bartlett, Robert H. (2016). ""Treating Lungs"- The Scientific Contributions of Dr. Theodor Kolobow". ASAIO Journal. 62 (2): 203–210. doi:10.1097/MAT.0000000000000323. ISSN   1058-2916. PMC   4790827 . PMID   26720733.
  2. Zapol, W. M.; Kolobow, T.; Pierce JEVUREK, G. G.; Bowman, R. L. (1969-10-31). "Artificial placenta: two days of total extrauterine support of the isolated premature lamb fetus". Science. 166 (3905): 617–618. Bibcode:1969Sci...166..617Z. doi:10.1126/science.166.3905.617. ISSN   0036-8075. PMID   5823294. S2CID   9118733.
  1. ^ Dorson, W.J. and Loria, J.B., "Heart Lung Machines", in: Webster's Encyclopaedia of Medical Devices and Instrumentation, Vol. 3 (1988), Wiley, New York: 14401457.
  2. ^ Galletti, P.M., "Cardiopulmonary Bypass: A Historical Perspective", Artificial Organs 17:8 (1993), 675–686.
  3. ^ Gibbon, J.H. Chairman's address to the American Society for Artificial Internal Organs, Transactions of the American Society for Artificial Internal Organs, 1 (1955), 58–62.
  4. ^ Kolff, W.J., and Balzer R., "The Artificial Coil Lung", Transactions of the American Society for Artificial Internal Organs, 1 (1955), 39–42.
  5. ^ Kolff, W.J., and Effler, D.B., "Disposable Membrane Oxygenator (Heart-Lung Machine) and its use in Experimental and Clinical Surgery while the Heart is Arrested with Potassium Citrate According to the Melrose Technique, Transactions of the American Society for Artificial Internal Organs, 2 (1956), 13-17.
  6. ^ Kolobow, T., and Bowman, R.L., "Construction and Evaluation of an Alveolar Membrane Artificial Heart-Lung", Transactions of the American Society for Artificial Internal Organs, 9 (1963), 238–241.
  7. ^ Dutton, R.C., et al., "Development and Evaluation of a New Hollow Fibre Membrane Oxygenator", Transactions of the American Society for Artificial Internal Organs, 17 (1971), 331–336.
  8. ^ Gaylor, J.D.S., "Membrane Oxygenators: Current Developments in Design and Application", Journal of Biomedical Engineering 10 (1988), 541–547.