Membrane transport

Last updated

In cellular biology, membrane transport refers to the collection of mechanisms that regulate the passage of solutes such as ions and small molecules through biological membranes, which are lipid bilayers that contain proteins embedded in them. The regulation of passage through the membrane is due to selective membrane permeability – a characteristic of biological membranes which allows them to separate substances of distinct chemical nature. In other words, they can be permeable to certain substances but not to others. [1]

Contents

The movements of most solutes through the membrane are mediated by membrane transport proteins which are specialized to varying degrees in the transport of specific molecules. As the diversity and physiology of the distinct cells is highly related to their capacities to attract different external elements, it is postulated that there is a group of specific transport proteins for each cell type and for every specific physiological stage. [1] This differential expression is regulated through the differential transcription of the genes coding for these proteins and its translation, for instance, through genetic-molecular mechanisms, but also at the cell biology level: the production of these proteins can be activated by cellular signaling pathways, at the biochemical level, or even by being situated in cytoplasmic vesicles. The cell membrane regulates the transport of materials entering and exiting the cell. [2]

Background

Thermodynamically the flow of substances from one compartment to another can occur in the direction of a concentration or electrochemical gradient or against it. If the exchange of substances occurs in the direction of the gradient, that is, in the direction of decreasing potential, there is no requirement for an input of energy from outside the system; if, however, the transport is against the gradient, it will require the input of energy, metabolic energy in this case. [3] For example, a classic chemical mechanism for separation that does not require the addition of external energy is dialysis. In this system a semipermeable membrane separates two solutions of different concentration of the same solute. If the membrane allows the passage of water but not the solute the water will move into the compartment with the greatest solute concentration in order to establish an equilibrium in which the energy of the system is at a minimum. This takes place because the water moves from a high solvent concentration to a low one (in terms of the solute, the opposite occurs) and because the water is moving along a gradient there is no need for an external input of energy.

Diagram of a cell membrane
1. phospholipid 2. cholesterol 3. glycolipid 4. sugar 5. polytopic protein (transmembrane protein) 6. monotopic protein (here, a glycoprotein) 7. monotopic protein anchored by a phospholipid 8. peripheral monotopic protein (here, a glycoprotein.) Cell membrane scheme.png
Diagram of a cell membrane
1. phospholipid 2. cholesterol 3. glycolipid 4. sugar 5. polytopic protein (transmembrane protein) 6. monotopic protein (here, a glycoprotein) 7. monotopic protein anchored by a phospholipid 8. peripheral monotopic protein (here, a glycoprotein.)

The nature of biological membranes, especially that of its lipids, is amphiphilic, as they form bilayers that contain an internal hydrophobic layer and an external hydrophilic layer. This structure makes transport possible by simple or passive diffusion, which consists of the diffusion of substances through the membrane without expending metabolic energy and without the aid of transport proteins. If the transported substance has a net electrical charge, it will move not only in response to a concentration gradient, but also to an electrochemical gradient due to the membrane potential.

Relative permeability of a phospholipid bilayer to various substances [1]
Type of substanceExamplesBehaviour
GasesCO2, N2, O2Permeable
Small uncharged polar molecules Urea, water, ethanol Permeable, totally or partially
Large uncharged polar molecules glucose, fructose Not permeable
IonsK+, Na+, Cl, HCO3Not permeable
Charged polar molecules ATP, amino acids, glucose-6-phosphate Not permeable


As few molecules are able to diffuse through a lipid membrane the majority of the transport processes involve transport proteins. These transmembrane proteins possess a large number of alpha helices immersed in the lipid matrix. In bacteria these proteins are present in the beta lamina form. [4] This structure probably involves a conduit through hydrophilic protein environments that cause a disruption in the highly hydrophobic medium formed by the lipids. [1] These proteins can be involved in transport in a number of ways: they act as pumps driven by ATP, that is, by metabolic energy, or as channels of facilitated diffusion.

Transport of substances across the plasma membrane can be via passive transport (simple and facilitated diffusion) or active transport. Passive vs Active Membrane Transport.svg
Transport of substances across the plasma membrane can be via passive transport (simple and facilitated diffusion) or active transport.

Thermodynamics

A physiological process can only take place if it complies with basic thermodynamic principles. Membrane transport obeys physical laws that define its capabilities and therefore its biological utility.
A general principle of thermodynamics that governs the transfer of substances through membranes and other surfaces is that the exchange of free energy, ΔG, for the transport of a mole of a substance of concentration C1 in a compartment to another compartment where it is present at C2 is: [5]

When C2 is less than C1, ΔG is negative, and the process is thermodynamically favorable. As the energy is transferred from one compartment to another, except where other factors intervene, an equilibrium will be reached where C2=C1, and where ΔG = 0. However, there are three circumstances under which this equilibrium will not be reached, circumstances which are vital for the in vivo functioning of biological membranes: [5]

Where F is Faraday's constant and ΔP the membrane potential in volts. If ΔP is negative and Z is positive, the contribution of the term ZFΔP to ΔG will be negative, that is, it will favor the transport of cations from the interior of the cell. So, if the potential difference is maintained, the equilibrium state ΔG = 0 will not correspond to an equimolar concentration of ions on both sides of the membrane.

Where ΔGb corresponds to a favorable thermodynamic reaction, such as the hydrolysis of ATP, or the co-transport of a compound that is moved in the direction of its gradient.

Transport types

Passive diffusion and active diffusion

A semipermeable membrane separates two compartments of different solute concentrations: over time, the solute will diffuse until equilibrium is reached. Diffusion.jpg
A semipermeable membrane separates two compartments of different solute concentrations: over time, the solute will diffuse until equilibrium is reached.

As mentioned above, passive diffusion is a spontaneous phenomenon that increases the entropy of a system and decreases the free energy. [5] The transport process is influenced by the characteristics of the transport substance and the nature of the bilayer. The diffusion velocity of a pure phospholipid membrane will depend on:

Active and co-transport

In active transport a solute is moved against a concentration or electrochemical gradient; in doing so the transport proteins involved consume metabolic energy, usually ATP. In primary active transport the hydrolysis of the energy provider (e.g. ATP) takes place directly in order to transport the solute in question, for instance, when the transport proteins are ATPase enzymes. Where the hydrolysis of the energy provider is indirect as is the case in secondary active transport, use is made of the energy stored in an electrochemical gradient. For example, in co-transport use is made of the gradients of certain solutes to transport a target compound against its gradient, causing the dissipation of the solute gradient. It may appear that, in this example, there is no energy use, but hydrolysis of the energy provider is required to establish the gradient of the solute transported along with the target compound. The gradient of the co-transported solute will be generated through the use of certain types of proteins called biochemical pumps. [2]

The discovery of the existence of this type of transporter protein came from the study of the kinetics of cross-membrane molecule transport. For certain solutes it was noted that the transport velocity reached a plateau at a particular concentration above which there was no significant increase in uptake rate, indicating a log curve type response. This was interpreted as showing that transport was mediated by the formation of a substrate-transporter complex, which is conceptually the same as the enzyme-substrate complex of enzyme kinetics. Therefore, each transport protein has an affinity constant for a solute that is equal to the concentration of the solute when the transport velocity is half its maximum value. This is equivalent in the case of an enzyme to the Michaelis–Menten constant. [7] [8]

Some important features of active transport in addition to its ability to intervene even against a gradient, its kinetics and the use of ATP, are its high selectivity and ease of selective pharmacological inhibition [7]

Secondary active transporter proteins

Uniport, symport, and antiport of molecules through membranes. TransportProteine.png
Uniport, symport, and antiport of molecules through membranes.

Secondary active transporter proteins move two molecules at the same time: one against a gradient and the other with its gradient. They are distinguished according to the directionality of the two molecules:

  • antiporter (also called exchanger or counter-transporter): move a molecule against its gradient and at the same time displaces one or more ions along its gradient. The molecules move in opposite directions.
  • symporter: move a molecule against its gradient while displacing one or more different ions along their gradient. The molecules move in the same direction.

Both can be referred to as co-transporters.

Pumps

Simplified diagram of a sodium potassium pump showing alpha and beta units. Sodium Pump.svg
Simplified diagram of a sodium potassium pump showing alpha and beta units.

A pump is a protein that hydrolyses ATP to transport a particular solute through a membrane, and in doing so, generating an electrochemical gradient membrane potential. This gradient is of interest as an indicator of the state of the cell through parameters such as the Nernst potential. In terms of membrane transport the gradient is of interest as it contributes to decreased system entropy in the co-transport of substances against their gradient. One of the most important pumps in animal cells is the sodium potassium pump, that operates through the following mechanism: [9]

  1. binding of three Na+ ions to their active sites on the pump which are bound to ATP.
  2. ATP is hydrolyzed leading to phosphorylation of the cytoplasmic side of the pump, this induces a structure change in the protein. The phosphorylation is caused by the transfer of the terminal group of ATP to a residue of aspartate in the transport protein and the subsequent release of ADP.
  3. the structure change in the pump exposes the Na+ to the exterior. The phosphorylated form of the pump has a low affinity for Na+ ions so they are released.
  4. once the Na+ ions are liberated, the pump binds two molecules of K+ to their respective bonding sites on the extracellular face of the transport protein. This causes the dephosphorylation of the pump, reverting it to its previous conformational state, transporting the K+ ions into the cell.
  5. The unphosphorylated form of the pump has a higher affinity for Na+ ions than K+ ions, so the two bound K+ ions are released into the cytosol. ATP binds, and the process starts again.

Membrane selectivity

As the main characteristic of transport through a biological membrane is its selectivity and its subsequent behavior as a barrier for certain substances, the underlying physiology of the phenomenon has been studied extensively. Investigation into membrane selectivity have classically been divided into those relating to electrolytes and non-electrolytes.

Electrolyte selectivity

The ionic channels define an internal diameter that permits the passage of small ions that is related to various characteristics of the ions that could potentially be transported. As the size of the ion is related to its chemical species, it could be assumed a priori that a channel whose pore diameter was sufficient to allow the passage of one ion would also allow the transfer of others of smaller size, however, this does not occur in the majority of cases. There are two characteristics alongside size that are important in the determination of the selectivity of the membrane pores: the facility for dehydration and the interaction of the ion with the internal charges of the pore. [7]
In order for an ion to pass through a pore it must dissociate itself from the water molecules that cover it in successive layers of solvation. The tendency to dehydrate, or the facility to do this, is related to the size of the ion: larger ions can do it more easily that the smaller ions, so that a pore with weak polar centres will preferentially allow passage of larger ions over the smaller ones. [7] When the interior of the channel is composed of polar groups from the side chains of the component amino acids, [9] the interaction of a dehydrated ion with these centres can be more important than the facility for dehydration in conferring the specificity of the channel. For example, a channel made up of histidines and arginines, with positively charged groups, will selectively repel ions of the same polarity, but will facilitate the passage of negatively charged ions. Also, in this case, the smallest ions will be able to interact more closely due to the spatial arrangement of the molecule (stericity), which greatly increases the charge-charge interactions and therefore exaggerates the effect. [7]

Non-electrolyte selectivity

Non-electrolytes, substances that generally are hydrophobic and lipophilic, usually pass through the membrane by dissolution in the lipid bilayer, and therefore, by passive diffusion. For those non-electrolytes whose transport through the membrane is mediated by a transport protein the ability to diffuse is, generally, dependent on the partition coefficient K. Partially charged non-electrolytes, that are more or less polar, such as ethanol, methanol or urea, are able to pass through the membrane through aqueous channels immersed in the membrane. There is no effective regulation mechanism that limits this transport, which indicates an intrinsic vulnerability of the cells to the penetration of these molecules. [7]

Creation of membrane transport proteins

There are several databases which attempt to construct phylogenetic trees detailing the creation of transporter proteins. One such resource is the Transporter Classification database [10]

See also

Related Research Articles

<span class="mw-page-title-main">Facilitated diffusion</span> Biological process

Facilitated diffusion is the process of spontaneous passive transport of molecules or ions across a biological membrane via specific transmembrane integral proteins. Being passive, facilitated transport does not directly require chemical energy from ATP hydrolysis in the transport step itself; rather, molecules and ions move down their concentration gradient according to the principles of diffusion.

A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction:

In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, without energy.

<span class="mw-page-title-main">ATPase</span> Dephosphorylation enzyme

ATPases (EC 3.6.1.3, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3-ATPase, adenosine triphosphatase) are a class of enzymes that catalyze the decomposition of ATP into ADP and a free phosphate ion or the inverse reaction. This dephosphorylation reaction releases energy, which the enzyme (in most cases) harnesses to drive other chemical reactions that would not otherwise occur. This process is widely used in all known forms of life.

<span class="mw-page-title-main">Passive transport</span> Transport that does not require energy

Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes. Fundamentally, substances follow Fick's first law, and move from an area of high concentration to an area of low concentration because this movement increases the entropy of the overall system. The rate of passive transport depends on the permeability of the cell membrane, which, in turn, depends on the organization and characteristics of the membrane lipids and proteins. The four main kinds of passive transport are simple diffusion, facilitated diffusion, filtration, and/or osmosis.

A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins; that is they exist permanently within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion, active transport, osmosis, or reverse diffusion. The two main types of proteins involved in such transport are broadly categorized as either channels or carriers. Examples of channel/carrier proteins include the GLUT 1 uniporter, sodium channels, and potassium channels. The solute carriers and atypical SLCs are secondary active or facilitative transporters in humans. Collectively membrane transporters and channels are known as the transportome. Transportomes govern cellular influx and efflux of not only ions and nutrients but drugs as well.

<span class="mw-page-title-main">Membrane potential</span> Type of physical quantity

Membrane potential is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges to move from the internal to exterior cellular environments and vice versa, as long as there is no acquisition of kinetic energy or the production of radiation. The concentration gradients of the charges directly determine this energy requirement. For the exterior of the cell, typical values of membrane potential, normally given in units of milli volts and denoted as mV, range from –80 mV to –40 mV.

<span class="mw-page-title-main">Resting potential</span> Static membrane potential in biology

A relatively static membrane potential which is usually referred to as the ground value for trans-membrane voltage.

<span class="mw-page-title-main">Chemiosmosis</span> Electrochemical principle that enables cellular respiration

Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H+) across a membrane during cellular respiration or photosynthesis.

<span class="mw-page-title-main">Uniporter</span>

Uniporters, also known as solute carriers or facilitated transporters, are a type of membrane transport protein that passively transports solutes across a cell membrane. It uses facilitated diffusion for the movement of solutes down their concentration gradient from an area of high concentration to an area of low concentration. Unlike active transport, it does not require energy in the form of ATP to function. Uniporters are specialized to carry one specific ion or molecule and can be categorized as either channels or carriers. Facilitated diffusion may occur through three mechanisms: uniport, symport, or antiport. The difference between each mechanism depends on the direction of transport, in which uniport is the only transport not coupled to the transport of another solute.

<span class="mw-page-title-main">Antiporter</span> Class of transmembrane transporter protein

An antiporter (also called exchanger or counter-transporter) is a cotransporter and integral membrane protein involved in secondary active transport of two or more different molecules or ions across a phospholipid membrane such as the plasma membrane in opposite directions, one into the cell and one out of the cell. Na+/H+ antiporters have been reviewed.

<span class="mw-page-title-main">Cotransporter</span> Type of membrane transport proteins

Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They enable coupled or cotransport and include antiporters and symporters. In general, cotransporters consist of two out of the three classes of integral membrane proteins known as transporters that move molecules and ions across biomembranes. Uniporters are also transporters but move only one type of molecule down its concentration gradient and are not classified as cotransporters.

<span class="mw-page-title-main">Electrochemical gradient</span> Gradient of electrochemical potential, usually for an ion that can move across a membrane

An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts:

<span class="mw-page-title-main">Ion transporter</span> Transmembrane protein that moves ions across a biological membrane

In biology, a transporter is a transmembrane protein that moves ions across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. There are different types of transporters including pumps, uniporters, antiporters, and symporters. Active transporters or ion pumps are transporters that convert energy from various sources—including adenosine triphosphate (ATP), sunlight, and other redox reactions—to potential energy by pumping an ion up its concentration gradient. This potential energy could then be used by secondary transporters, including ion carriers and ion channels, to drive vital cellular processes, such as ATP synthesis.

Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose. The two ways in which glucose uptake can take place are facilitated diffusion and secondary active transport. Active transport is the movement of ions or molecules going against the concentration gradient.

Cell physiology is the biological study of the activities that take place in a cell to keep it alive. The term physiology refers to normal functions in a living organism. Animal cells, plant cells and microorganism cells show similarities in their functions even though they vary in structure.

<span class="mw-page-title-main">Symporter</span>

A symporter is an integral membrane protein that is involved in the transport of two different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across the cell membrane at the same time, and is, therefore, a type of cotransporter. The transporter is called a symporter, because the molecules will travel in the same direction in relation to each other. This is in contrast to the antiport transporter. Typically, the ion(s) will move down the electrochemical gradient, allowing the other molecule(s) to move against the concentration gradient. The movement of the ion(s) across the membrane is facilitated diffusion, and is coupled with the active transport of the molecule(s). In symport, two molecule move in a 'similar direction' at the 'same time'. For example, the movement of glucose along with sodium ions. It exploits the uphill movement of other molecules from low to high concentration, which is against the electrochemical gradient for the transport of solute molecules downhill from higher to lower concentration.

Solute pumping is a form of active transport of a solute through a cell membrane. Solute pumping allows a molecule that cannot regularly cross the lipid bilayer to enter the cell by way of a protein channel. Unlike diffusion, solute pumping requires energy to change the shape of the protein channel to allow the molecule to pass through, which is why it is an active transport mechanism.

Transcellular transport involves the transportation of solutes by a cell through a cell. Transcellular transport can occur in three different ways active transport, passive transport, and transcytosis.

<span class="mw-page-title-main">Cell membrane</span> Biological membrane that separates the interior of a cell from its outside environment

The cell membrane is a biological membrane that separates and protects the interior of a cell from the outside environment. The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols interspersed between them, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as membrane transporters, and peripheral proteins that loosely attach to the outer (peripheral) side of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose. The cell membrane controls the movement of substances in and out of a cell, being selectively permeable to ions and organic molecules. In addition, cell membranes are involved in a variety of cellular processes such as cell adhesion, ion conductivity, and cell signalling and serve as the attachment surface for several extracellular structures, including the cell wall and the carbohydrate layer called the glycocalyx, as well as the intracellular network of protein fibers called the cytoskeleton. In the field of synthetic biology, cell membranes can be artificially reassembled.

References

  1. 1 2 3 4 Lodish; et al. (2005). Biología celular y molecular (Buenos Aires: Médica Panamericana ed.). Ed. Médica Panamericana. ISBN   950-06-1374-3.
  2. 1 2 Alberts; et al. (2004). Biología molecular de la célula (Barcelona: Omega ed.). Ediciones Omega, S.a. ISBN   84-282-1351-8.
  3. Cromer, A.H. (1996). Física para ciencias de la vida (in Spanish) (Reverté ediciones ed.). Reverte. ISBN   84-291-1808-X.
  4. Prescott, L.M. (1999). Microbiología (McGraw-Hill Interamericana de España, S.A.U. ed.). McGraw-Hill Interamericana. ISBN   84-486-0261-7.
  5. 1 2 3 Mathews C. K.; Van Holde, K.E; Ahern, K.G (2003). Bioquímica (3rd ed.). Pearson Education. ISBN   84-7829-053-2.
  6. Zaheri, Shadi and Hassanipour, Fatemeh (2020). "A comprehensive approach to the mathematical modeling of mass transport in biological systems: Fundamental concepts and models". International Journal of Heat and Mass Transfer. 158: 119777. doi: 10.1016/j.ijheatmasstransfer.2020.119777 . S2CID   225223363.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. 1 2 3 4 5 6 Randall D; Burggren, W.; French, K. (1998). Eckert Fisiología animal (4th ed.). ISBN   84-486-0200-5.
  8. Zaheri, Shadi; Hassanipour, Fatemeh (2020). "A comprehensive approach to the mathematical modeling of mass transport in biological systems: Fundamental concepts and models". International Journal of Heat and Mass Transfer. 158: 199777. doi: 10.1016/j.ijheatmasstransfer.2020.119777 . S2CID   225223363.
  9. 1 2 Lehninger, Albert (1993). Principles of Biochemistry, 2nd Ed (Worth Publishers ed.). Worth Publishers. ISBN   0-87901-711-2.
  10. "Transporter Classification Database". Archived from the original on 3 January 2014. Retrieved 15 July 2010.