Mesoscale manufacturing

Last updated
Manufacturing Classification Manufacturing Classification.png
Manufacturing Classification

Mesoscale manufacturing is the process of creating components and products in a range of approximately from 0.1mm to 5mm with high accuracy and precision using a wide variety of engineering materials. Mesomanufacturing processes are filling the gap between macro- and micromanufacturing processes and overlaps both of them. (see picture). Other manufacturing technologies are nanoscale (< 100 nm), microscale (100 nm to 100 µm) and macroscale manufacturing (> 0.5 mm). [1]

Contents

Applications

Application of mesomanufacturing include electronics, biotechnology, optics, medicine, avionics, communications, and other areas. Specific applications include mechanical watches, and extremely small motors and bearings; lenses for cameras and other micro parts for mobile telephones; micro-batteries, mesoscale fuel cells, microscale pumps, valves, and mixing devices for microchemical reactors; biomedical implants, microholes for fiber optics; medical devices such as stents and valves; mini nozzles for high-temperature jets; mesoscale molds; desktop- or micro-factories, and many others. [2]

Processes

Manufacturing in the mesoscale can be accomplished by scaling down macroscale manufacturing processes or scaling up nanomanufacturing processes. [3] Macroscale techniques like mill and lathe machining have been successful used to create features in the range of 25 µm. Meso Machine tools (mMTs), for example a miniaturized milling machine, is an expansion of using traditional macroscale techniques to manufacture mesoscale products. With the limitation of self-excited vibration of machine tools and fatigue, microassembly and micro- and mesoscale milling are created to improve the maximum stiffness and dynamic operation of the milling process, which improves the overall performance of manufacturing. [4] The development of mMTs has revealed many challenges that are specific to machining at the small scales. These challenges stem from the large influence of grain size at small scales and the necessity of extremely small tolerances for both the machine tools and the measuring tools. [1]

Laser machining is a traditional technique that uses nanosecond pulses of ultraviolet light to create mesoscale features like holes, fillets, etc. The removal of material during laser machining is proportional to exposure time and therefore this process can be used to create three dimensional features. [5]

A less traditional technique is to use focused ion beam sputtering (FIB) to remove material. This process involves focusing a beam of ions, like from gallium, to the work piece and this causes material to be removed. Using FIB sputtering has a relatively low rate of material removal and therefore has limited application. [5]

Electrical discharge machining (EDM) is another subtractive manufacturing process used in the mesoscale. This process requires that electricity be transferred between the tool electrode and the work piece and therefore it can only be used to manufacture materials that conduct electricity. One advantage of EDM is that it can be used on hard materials that do not work well in traditional machining processes, such as titanium. [5]

Related Research Articles

Microelectromechanical systems Very small devices that incorporate moving components

Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems and the related micromechatronics and microsystems constitute the technology of microscopic devices, particularly those with moving parts. They merge at the nanoscale into nanoelectromechanical systems (NEMS) and nanotechnology. MEMS are also referred to as micromachines in Japan and microsystem technology (MST) in Europe.

Electrical discharge machining Metal fabrication process

Electrical discharge machining (EDM), also known as spark machining, spark eroding, die sinking, wire burning or wire erosion, is a metal fabrication process whereby a desired shape is obtained by using electrical discharges (sparks). Material is removed from the work piece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric liquid and subject to an electric voltage. One of the electrodes is called the tool-electrode, or simply the tool or electrode, while the other is called the workpiece-electrode, or work piece. The process depends upon the tool and work piece not making physical contact.

Microtechnology deals with technology whose features have dimensions of the order of one micrometre. It focuses on physical and chemical processes as well as the production or manipulation of structures with one-micrometre magnitude.

Machining Material-removal process; Manufacturing process

Machining is a process in which a material is cut to a desired final shape and size by a controlled material-removal process. The processes that have this common theme are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

Diamond turning

Diamond turning is turning using a cutting tool with a diamond tip. It is a process of mechanical machining of precision elements using lathes or derivative machine tools equipped with natural or synthetic diamond-tipped tool bits. The term single-point diamond turning (SPDT) is sometimes applied, although as with other lathe work, the "single-point" label is sometimes only nominal. The process of diamond turning is widely used to manufacture high-quality aspheric optical elements from crystals, metals, acrylic, and other materials. Plastic optics are frequently molded using diamond turned mold inserts. Optical elements produced by the means of diamond turning are used in optical assemblies in telescopes, video projectors, missile guidance systems, lasers, scientific research instruments, and numerous other systems and devices. Most SPDT today is done with computer numerical control (CNC) machine tools. Diamonds also serve in other machining processes, such as milling, grinding, and honing. Diamond turned surfaces have a high specular brightness and require no additional polishing or buffing, unlike other conventionally machined surfaces.

Electrochemical machining

Electrochemical machining (ECM) is a method of removing metal by an electrochemical process. It is normally used for mass production and is used for working extremely hard materials or materials that are difficult to machine using conventional methods. Its use is limited to electrically conductive materials. ECM can cut small or odd-shaped angles, intricate contours or cavities in hard and exotic metals, such as titanium aluminides, Inconel, Waspaloy, and high nickel, cobalt, and rhenium alloys. Both external and internal geometries can be machined.

Mesoscale meteorology

Mesoscale meteorology is the study of weather systems smaller than synoptic scale systems but larger than microscale and storm-scale cumulus systems. Horizontal dimensions generally range from around 5 kilometers to several hundred kilometers. Examples of mesoscale weather systems are sea breezes, squall lines, and mesoscale convective complexes.

Focused ion beam Device

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography. These are generally quite different systems where the material is modified by other mechanisms.

Electroforming

Electroforming is a metal forming process in which parts are fabricated through electrodeposition on a model, known in the industry as a mandrel. Conductive (metallic) mandrels are treated to create a mechanical parting layer, or are chemically passivated to limit electroform adhesion to the mandrel and thereby allow its subsequent separation. Non-conductive mandrels require the deposition of a conductive layer prior to electrodeposition. Such layers can be deposited chemically, or using vacuum deposition techniques. The outer surface of the mandrel forms the inner surface of the form.

Microfabrication

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems, micromachines and their subfields, microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness. It comprises the small, local deviations of a surface from the perfectly flat ideal.

Integrated Computational Materials Engineering (ICME) is an approach to design products, the materials that comprise them, and their associated materials processing methods by linking materials models at multiple length scales. Key words are "Integrated", involving integrating models at multiple length scales, and "Engineering", signifying industrial utility. The focus is on the materials, i.e. understanding how processes produce material structures, how those structures give rise to material properties, and how to select materials for a given application. The key links are process-structures-properties-performance. The National Academies report describes the need for using multiscale materials modeling to capture the process-structures-properties-performance of a material.

Microscale meteorology or micrometeorology is the study of short-lived atmospheric phenomena smaller than mesoscale, about 1 kilometre (0.6 mi) or less. These two branches of meteorology are sometimes grouped together as "mesoscale and microscale meteorology" (MMM) and together study all phenomena smaller than synoptic scale; that is they study features generally too small to be depicted on a standard weather map. These include small and generally fleeting cloud "puffs" and other small cloud features. Microscale meteorology controls the most important mixing and dilution processes in the atmosphere. Important topics in microscale meteorology include heat transfer and gas exchange between soil, vegetation, and/or surface water and the atmosphere caused by near-ground turbulence. Measuring these transport processes involves use of micrometeorological towers. Variables often measured or derived include net radiation, sensible heat flux, latent heat flux, ground heat storage, and fluxes of trace gases important to the atmosphere, biosphere, and hydrosphere.

Ultrasonic machining

Ultrasonic machining is a subtractive manufacturing process that removes material from the surface of a part through high frequency, low amplitude vibrations of a tool against the material surface in the presence of fine abrasive particles. The tool travels vertically or orthogonal to the surface of the part at amplitudes of 0.05 to 0.125 mm. The fine abrasive grains are mixed with water to form a slurry that is distributed across the part and the tip of the tool. Typical grain sizes of the abrasive material range from 100 to 1000, where smaller grains produce smoother surface finishes.

Grinding (abrasive cutting)

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

Precision glass moulding

Precision glass moulding is a replicative process that allows the production of high precision optical components from glass without grinding and polishing. The process is also known as ultra-precision glass pressing. It is used to manufacture precision glass lenses for consumer products such as digital cameras, and high-end products like medical systems. The main advantage over mechanical lens production is that complex lens geometries such as aspheres can be produced cost-efficiently.

Equation-free modeling is a method for multiscale computation and computer-aided analysis. It is designed for a class of complicated systems in which one observes evolution at a macroscopic, coarse scale of interest, while accurate models are only given at a finely detailed, microscopic, level of description. The framework empowers one to perform macroscopic computational tasks using only appropriately initialized microscopic simulation on short time and small length scales. The methodology eliminates the derivation of explicit macroscopic evolution equations when these equations conceptually exist but are not available in closed form; hence the term equation-free.

Microscale and macroscale models Classes of computational models

Microscale models form a broad class of computational models that simulate fine-scale details, in contrast with macroscale models, which amalgamate details into select categories. Microscale and macroscale models can be used together to understand different aspects of the same problem.

Rule-based DFM analysis for electric discharge machining

Electrical discharge machining is one of the most accurate manufacturing processes available for creating complex or simple shapes and geometries within parts and assemblies. A machining method typically used for hard metals, EDM makes it possible to work with metals for which traditional machining techniques are ineffective.

Three-dimensional (3D) microfabrication refers to manufacturing techniques that involve the layering of materials to produce a three-dimensional structure at a microscopic scale. These structures are usually on the scale of micrometers and are popular in microelectronics and microelectromechanical systems.

References

  1. 1 2 Dow, T. A.; Scattergood, R. O. (Winter 2003). "Mesoscale and Microscale Manufacturing Processes: Challenges for Materials, Fabrication and Metrology". American Society for Precision Engineering.
  2. Dohda, Kuniaki; Ni, Jun (November 2004). "Micro/Meso-scale Manufacturing". Journal of Manufacturing Science and Engineering. 126 (4): 641. doi:10.1115/1.1814125.
  3. Kalpakjian, Serope; Schmid, Steven R. (2006). Manufacturing, Engineering & Technology. Pearson Education. p. 858. ISBN   0-13-148965-8.
  4. Moore, Paul Michael (2014-01-01). "Adaptively tuned micromanipulator and fixturing mechanism for micro and mesoscale manufacturing". UNIVERSITY OF FLORIDA.{{cite journal}}: Cite journal requires |journal= (help)
  5. 1 2 3 Benavides, Gilbert L.; Adams, David P. (June 2001). "Meso-Machining Capabilities" (PDF). Sandia National Laboratories.