Methylcyclohexene

Last updated
Methylcyclohexene
Methylcyclohexene.jpg
Names
IUPAC name
1-Methylcyclohexene,3-Methylcyclohexene, 4-Methylcyclohexene
Systematic IUPAC name
1-Methylcyclohexene,3-Methylcyclohexene, 4-Methylcyclohexene
Other names
2,3,4,5-Tetrahydrotoluene or 1-Methyl-1-Cyclohexene (1-Methylcyclohexene), 1,2,3,6-Tetrahydrotoluene (4-Methylcyclohexene)
Identifiers
3D model (JSmol)
1304483 (1-methylcyclohexene), 1848550 (3-methylcyclohexene), 1901299 (4-methylcyclohexene)
ChemSpider
EC Number
  • 1-:209-718-0
  • 3-:209-717-5
  • 4-:209-715-4
PubChem CID
UNII
UN number 3295
  • 1-:InChI=1S/C7H12/c1-7-5-3-2-4-6-7/h5H,2-4,6H2,1H3
    Key: CTMHWPIWNRWQEG-UHFFFAOYSA-N
  • 3-:InChI=1S/C7H12/c1-7-5-3-2-4-6-7/h3,5,7H,2,4,6H2,1H3
    Key: UZPWKTCMUADILM-UHFFFAOYSA-N
  • 4-:InChI=1S/C7H12/c1-7-5-3-2-4-6-7/h2-3,7H,4-6H2,1H3
    Key: FSWCCQWDVGZMRD-UHFFFAOYSA-N
  • 1-:CC1=CCCCC1
  • 3-:CC1CCCC=C1
  • 4-:CC1CCC=CC1
Properties
C7H12
Molar mass 96.170 g/mol for 1-methylcyclohexene
Appearanceclear, liquid, colorless for 1-methylcyclohexene
Density 0.811 g/mL at 20 °C for 1-methylcyclohexene, 0.805 g/mL for 3-methylcyclohexene, 0.799 g/mL for 4-methylcyclohexene
Melting point -120.4°C for 1-methylcyclohexene at 1 atm, -124 °C for 3-methylcyclohexene, -115.5 °C 4-methylcyclohexene
Boiling point 110 °C for 1-methylcyclohexene at 1 atm, 104 °C for 3-methylcyclohexene, 103 °C 4-methylcyclohexene
0.052 g/kg for 1-methylcyclohexene
1.44 for 1-methylcyclohexene
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Warning
H225, H304, H315, H319, H335
P210, P233, P240, P241, P242, P243, P261, P264, P271, P280, P301+P310, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P312, P321, P331, P332+P313, P337+P313, P362, P370+P378, P403+P233, P403+P235, P405, P501
Flash point -3 °C
Safety data sheet (SDS) MSDS (1-methylcyclohexene)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Methylcyclohexene refers to any one of three organic compounds consisting of cyclohexene with a methyl group substituent. The location of the methyl group relative to the cyclohexene double bond creates the three different structural isomers. These compounds are generally used as a reagent or intermediate to derive other organic compounds. [1]

Contents

Methylcyclohexenes are a cyclic olefins. Cyclic olefins can come together to form polymers. These polymers are thermoplastics that are advantageous due to their low moisture intake, their ability to resist high temperatures, have low bireinfringence, and excellent transparency. This type of polymer material is very useful in medical instruments, packaging, fibers, and optics.

As simple molecules, methylcyclohexenes are generally available from different biochemical manufacturers.[ citation needed ]

Synthesis

Synthesis of methylcyclohexene Methylcyclohexene synthesis.jpg
Synthesis of methylcyclohexene

There are different ways to produce methylcyclohexenes. A mixture of 1- and 2-methylcyclohexene can be produced by first reacting cyclohexanone with methylmagnesium bromide to 1-methylcyclohexanol, then dehydrating by heating in the presence of an acid or a base. This yields the methylcyclohexenes as the major products along with methylenecyclohexane as the minor product. 1-methylcyclohexene is dominant because of the more stable trisubstituted alkene structure. Although it is not preferred due to the high activation energy requirement, synthesis of 1-methylcyclohexene can also be done by Diels–Alder reaction.[ citation needed ]

Methylcyclohexene is also formed as a by-product in the hydrogenation of toluene to methylcyclohexane over ruthenium catalyst, which can lead to catalyst poisoning if the catalyst is insufficiently activated. Catalysts that have not been sufficiently hydrogenated prior to introduction of toluene will experience poisoning of active sites by methylcyclohexene, as the double bond adsorbs strongly to the catalyst surface. [2]

Structure and bonding

bond lengths Bonds1.png
bond lengths

The isomers of methylcyclohexene each contain a six carbon ring structure, with one carbon-carbon double bond within the ring and one methyl substituent on the ring. [3] The bond lengths in 1-methylcyclohexene are approximately 1.33 Å between C1 (the carbon in the ring with the methyl substituent) and C2 (the second carbon of the double bond), 1.51 Å between C2 and C3 (the next carbon around the ring) and between C6 and C1, 1.54 Å between C3 and C4, between C4 and C5, and between C5 and C6, and 1.50 Å between C1 and the carbon of the methyl substituent. The bond lengths of the other isomers of methylcyclohexene vary slightly from 1-methylcyclohexene, due to the different position of the double bond with respect to the methyl substituent.

Reactions

Ozonolysis

As an unsaturated molecule, methylcyclohexene can undergo oxidation with several oxidizing agents, including the strong oxidizing agent ozone, undergoing ozonolysis to release either atomic oxygen or a hydroxyl radical. Its reactivity towards ozone makes it an atmospheric pollutant, as it contributes to ozone depletion by trapping the oxygen atoms into its end products as carbonyl compounds. [4]

Hydrosilyation

"Hydrosilylation of Cyclohexene" Hydrosilylation of methylcyclohexene.jpg
"Hydrosilylation of Cyclohexene"

The regioselectivity and stereoselectivity of hydrosilylation of 1-methylcyclohexene with chloro(methyl)silanes depends on the number of chlorine atoms in the hydrosilylating agent. [5] Using chlorodimethylsilane produces a mixture of seven different products including cis- and trans-isomers of 2-, 3-, 4-chlorodimethyl(methylcyclohexyl)silanes and chlorodimethyl(cyclohexylmethyl)silane. The poor selectivity is due to the migration of the double bond in the cyclohexene ring. Reaction with dichloromethylsilane is more regioselective and stereoselective, only giving three of the seven products obtained from monochlorodimethylsilane. With trichloromethylsilane, trichlorocyclohexylmethylsilane is the only possible product and is obtained at 60 percent yield. All these products can be further reacted with Grignard reagents such as ethynylmagnesium bromide to synthesize ethynyl derivatives.

Oxidation with Cytochrome P450

1-methylcyclohexene can be oxidized with a Cytochrome P450 catalyst. The ratioof hydroxylation products to epoxidation products was shown to be 2:1. [6]

Bromination

Bromination of methylcyclohexene Bromination1.jpg
Bromination of methylcyclohexene
Bromination of methylcyclohexene Bromination2.png
Bromination of methylcyclohexene

In the presence of a Cinchona alkaloid, bromination of an alkene leads to optically active dibromides. [7] For 4-methylcyclohexene, the (S)-configuration leads to two different products: the bromines can add at the axial positions, giving the orientation (1S:3R:4R), or at the equatorial positions, giving the orientation (1S:3S:4S). Similarly, the (R)-configuration produces two different products: axial addition yields the configuration (1R:3S:4S) and equatorial addition yields (1R:3R:4R).

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds, also known as "mono- and polycyclic aromatic hydrocarbons", are organic compounds containing one or more aromatic rings. The parent member of aromatic compounds is benzene. The word "aromatic" originates from the past grouping of molecules based on smell, before their general chemical properties are understood. The current definition of aromatic compounds does not have any relation with their smell.

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond.

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n-2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870.

A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group.

<span class="mw-page-title-main">Unsaturated hydrocarbon</span> Hydrocarbon with double or triple covalent bonds between adjacent carbon atoms

Unsaturated hydrocarbons are hydrocarbons that have double or triple covalent bonds between adjacent carbon atoms. The term "unsaturated" means more hydrogen atoms may be added to the hydrocarbon to make it saturated. The configuration of an unsaturated carbons include straight chain, such as alkenes and alkynes, as well as branched chains and aromatic compounds.

A cycloalkene or cycloolefin is a type of alkene hydrocarbon which contains a closed ring of carbon atoms and either one or more double bonds, but has no aromatic character. Some cycloalkenes, such as cyclobutene and cyclopentene, can be used as monomers to produce polymer chains. Due to geometrical considerations, smaller cycloalkenes are almost always the cis isomers, and the term cis tends to be omitted from the names. Cycloalkenes require considerable p-orbital overlap in the form of a bridge between the carbon-carbon double bond, however, this is not feasible in smaller molecules due to the increase of strain that could break the molecule apart. In greater carbon number cycloalkenes, the addition of CH2 substituents decreases strain. trans-Cycloalkenes with 7 or fewer carbons in the ring will not occur under normal conditions because of the large amount of ring strain needed. In larger rings (8 or more atoms), cistrans isomerism of the double bond may occur. This stability pattern forms part of the origin of Bredt's rule, the observation that alkenes do not form at the bridgehead of many types of bridged ring systems because the alkene would necessarily be trans in one of the rings.

Hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group (CHO) and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: Production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resulting aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and drugs. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

<span class="mw-page-title-main">Ene reaction</span> Reaction in organic chemistry

In organic chemistry, the ene reaction is a chemical reaction between an alkene with an allylic hydrogen and a compound containing a multiple bond, in order to form a new σ-bond with migration of the ene double bond and 1,5 hydrogen shift. The product is a substituted alkene with the double bond shifted to the allylic position.

<span class="mw-page-title-main">Olefin metathesis</span>

Olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative organic reactions. For their elucidation of the reaction mechanism and their discovery of a variety of highly active catalysts, Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock were collectively awarded the 2005 Nobel Prize in Chemistry.

In organic chemistry, syn- and anti-addition are different ways in which substituent molecules can be added to an alkene or alkyne. The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.

Alkane metathesis is a class of chemical reaction in which an alkane is rearranged to give a longer or shorter alkane product. It is similar to olefin metathesis, except that olefin metathesis cleaves and recreates a carbon-carbon double bond, but alkane metathesis operates on a carbon-carbon single bond.

In organic chemistry, hydroboration refers to the addition of a hydrogen-boron bond to certain double and triple bonds involving carbon. This chemical reaction is useful in the organic synthesis of organic compounds.

Ring-closing metathesis (RCM) is a widely used variation of olefin metathesis in organic chemistry for the synthesis of various unsaturated rings via the intramolecular metathesis of two terminal alkenes, which forms the cycloalkene as the E- or Z- isomers and volatile ethylene.

<span class="mw-page-title-main">Asymmetric induction</span> Preferential formation of one chiral isomer over another in a chemical reaction

In stereochemistry, asymmetric induction describes the preferential formation in a chemical reaction of one enantiomer or diastereoisomer over the other as a result of the influence of a chiral feature present in the substrate, reagent, catalyst or environment. Asymmetric induction is a key element in asymmetric synthesis.

The Fleming–Tamao oxidation, or Tamao–Kumada–Fleming oxidation, converts a carbon–silicon bond to a carbon–oxygen bond with a peroxy acid or hydrogen peroxide. Fleming–Tamao oxidation refers to two slightly different conditions developed concurrently in the early 1980s by the Kohei Tamao and Ian Fleming research groups.

In organic chemistry, enone–alkene cycloadditions are a version of the [2+2] cycloaddition This reaction involves an enone and alkene as substrates. Although the concerted photochemical [2+2] cycloaddition is allowed, the reaction between enones and alkenes is stepwise and involves discrete diradical intermediates.

Metal-catalyzed intermolecular carbenoid cyclopropanations are organic reactions that result in the formation of a cyclopropane ring from a metal carbenoid species and an alkene. In the Simmons–Smith reaction the metal involved is zinc.

Methane functionalization is the process of converting methane in its gaseous state to another molecule with a functional group, typically methanol or acetic acid, through the use of transition metal catalysts.

In organic chemistry, the Murai reaction is an organic reaction that uses C-H activation to create a new C-C bond between a terminal or strained internal alkene and an aromatic compound using a ruthenium catalyst. The reaction, named after Shinji Murai, was first reported in 1993. While not the first example of C-H activation, the Murai reaction is notable for its high efficiency and scope. Previous examples of such hydroarylations required more forcing conditions and narrow scope.

References

  1. Khanarian, G.; Celanese, H. (2001). "Optical Properties of Cyclic Olefin Copolymers". Optical Engineering. 40 (6): 1024. Bibcode:2001OptEn..40.1024K. doi:10.1117/1.1369411.
  2. Belohlav, H.; Kluson, P.; Cerveny, L. (1997). "Partial Hydrogenation of Toluene Over A Ruthenium Catalyst, A Model Treatment of A Deactivation Process". Res. Chem. Intermed. 32 (2): 161–168. doi:10.1163/156856797X00312. S2CID   95532469.
  3. Handbook of Chemistry & Physics Online Section 4.
  4. Atkinson, Roger; Tuazon, Ernesto C.; Aschmann, Sara M. (1995). "Products". Environ. Sci. Technol. (29). doi: 10.1029/98JD00524 .
  5. Voronkov, M.; et al. (December 2004). "Hydrosilylation of Cyclohexene, 1-Methylcyclohexene, and Isopropylidenecyclohexane". Russian Journal of General Chemistry. 74 (12): 1895–1899. doi:10.1007/s11176-005-0114-4. S2CID   98097289.
  6. Khan, M. M. T.; Rao, A. P.; Bhatt, S. D.; Merchant, R. R. (1990). "Epoxidation of cyclohexene, methylcyclohexene and cis-cyclooctene by molecular oxygen using ruthenium(III) aquo ion as catalyst: A kinetic study". Journal of Molecular Catalysis. 62 (3): 265–276. doi:10.1016/0304-5102(90)85222-4.
  7. Bellucci, G.; Giordano, C.; Marsili, A.; Berti, G. (1969). "Asymmetric Bromination of 4-Methylcyclohexene in the Presence of Dihydrocinchonine". Tetrahedron. 25 (18): 4515–4522. doi:10.1016/S0040-4020(01)82993-8.