Mincer earnings function

Last updated

The Mincer earnings function is a single-equation model that explains wage income as a function of schooling and experience. It is named after Jacob Mincer. [1] [2] Thomas Lemieux argues it is "one of the most widely used models in empirical economics". The equation has been examined on many datasets. Typically the logarithm of earnings is modelled as the sum of years of education and a quadratic function of "years of potential experience". [3] [4]

Where the variables have the following meanings; is earnings (the intercept is the earnings of someone with no education and no experience); is years of schooling; is years of potential labour market experience. [3] The parameters , and , can be interpreted as the returns to schooling and experience, respectively.

Sherwin Rosen, in his article celebrating Mincer's contribution, memorably noted that when data was interrogated using this equation one might describe them as having been Mincered. [5]

Related Research Articles

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system which is entangled with another, without describing their combined state.
<span class="mw-page-title-main">Gumbel distribution</span> Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

<span class="mw-page-title-main">Cobb–Douglas production function</span> Macroeconomic formula that describes productivity

In economics and econometrics, the Cobb–Douglas production function is a particular functional form of the production function, widely used to represent the technological relationship between the amounts of two or more inputs and the amount of output that can be produced by those inputs. The Cobb–Douglas form is developed and tested against statistical evidence by Charles Cobb and Paul Douglas between 1927 and 1947; according to Douglas, the functional form itself was developed earlier by Philip Wicksteed.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Jacob Mincer</span> American economist

Jacob Mincer, was a father of modern labor economics. He was Joseph L. Buttenwieser Professor of Economics and Social Relations at Columbia University for most of his active life.

<span class="mw-page-title-main">Inverse-gamma distribution</span> Two-parameter family of continuous probability distributions

In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation. 48 samples of robust M-estimators can be found in a recent review study.

A quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states. Indeed, quasiprobability distributions also have regions of negative probability density, counterintuitively, contradicting the first axiom. Quasiprobability distributions arise naturally in the study of quantum mechanics when treated in phase space formulation, commonly used in quantum optics, time-frequency analysis, and elsewhere.

In statistics and econometrics, the multivariate probit model is a generalization of the probit model used to estimate several correlated binary outcomes jointly. For example, if it is believed that the decisions of sending at least one child to public school and that of voting in favor of a school budget are correlated, then the multivariate probit model would be appropriate for jointly predicting these two choices on an individual-specific basis. J.R. Ashford and R.R. Sowden initially proposed an approach for multivariate probit analysis. Siddhartha Chib and Edward Greenberg extended this idea and also proposed simulation-based inference methods for the multivariate probit model which simplified and generalized parameter estimation.

In statistics, model specification is part of the process of building a statistical model: specification consists of selecting an appropriate functional form for the model and choosing which variables to include. For example, given personal income together with years of schooling and on-the-job experience , we might specify a functional relationship as follows:

<span class="mw-page-title-main">Quantile regression</span> Statistics concept

Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median of the response variable. Quantile regression is an extension of linear regression used when the conditions of linear regression are not met.

In statistical mechanics the hypernetted-chain equation is a closure relation to solve the Ornstein–Zernike equation which relates the direct correlation function to the total correlation function. It is commonly used in fluid theory to obtain e.g. expressions for the radial distribution function. It is given by:

The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data. Conceptually, this is achieved by explicitly modelling the individual sampling probability of each observation together with the conditional expectation of the dependent variable. The resulting likelihood function is mathematically similar to the tobit model for censored dependent variables, a connection first drawn by James Heckman in 1974. Heckman also developed a two-step control function approach to estimate this model, which avoids the computational burden of having to estimate both equations jointly, albeit at the cost of inefficiency. Heckman received the Nobel Memorial Prize in Economic Sciences in 2000 for his work in this field.

The Kitagawa–Blinder–Oaxaca decomposition is a statistical method that explains the difference in the means of a dependent variable between two groups by decomposing the gap into that part that is due to differences in the mean values of the independent variable within the groups, on the one hand, and group differences in the effects of the independent variable, on the other hand. The method was introduced by sociologist and demographer Evelyn M. Kitagawa in 1955. Ronald Oaxaca introduced this method in economics in his doctoral thesis at Princeton University and eventually published in 1973. The decomposition technique also carries the name of Alan Blinder who proposed a similar approach in the same year. Oaxaca's original research question was the wage differential between two different groups of workers, but the method has since been applied to numerous other topics.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

<span class="mw-page-title-main">Vibration of plates</span>

The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This suggests that a two-dimensional plate theory will give an excellent approximation to the actual three-dimensional motion of a plate-like object, and indeed that is found to be true.

Menter's Shear Stress Transport turbulence model, or SST, is a widely used and robust two-equation eddy-viscosity turbulence model used in Computational Fluid Dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k-epsilon in the free shear flow.

References

  1. Mincer, Jacob (1958). "Investment in Human Capital and Personal Income Distribution". Journal of Political Economy . 66 (4): 281–302. doi:10.1086/258055. JSTOR   1827422. S2CID   153616441.
  2. Mincer, J. (1974). Schooling, Experience and Earnings. New York: National Bureau of Economic Research. ISBN   9780870142659.
  3. 1 2 Lemieux, Thomas. (2006) "The 'Mincer equation' Thirty Years after Schooling, Experience, and Earnings" in Jacob Mincer: A Pioneer of Modern Labor Economics, Shoshanna Grossbard, ed., Springer: New York. pp. 127–145.
  4. Heckman, James J.; Lochner, Lance J.; Todd, Petra E. (2003). "Fifty Years of Mincer Earnings Regressions". NBER Working Paper No. 9732. doi: 10.3386/w9732 . S2CID   153064304.
  5. Rosen, Sherwin (1992). "Distinguished Fellow: Mincering Labor Economics". Journal of Economic Perspectives . 6 (2): 157–170. doi: 10.1257/jep.6.2.157 . JSTOR   2138414.

Further reading