Modular Common Spacecraft Bus

Last updated
The Modular Common Spacecraft Bus is a multi-use design which could drastically reduce the cost of spacecraft development Modular Common Spacecraft Bus.jpg
The Modular Common Spacecraft Bus is a multi-use design which could drastically reduce the cost of spacecraft development

The Modular Common Spacecraft Bus (MCSB) is a fast-development, low-cost, general purpose spacecraft platform. Its modular design is intended to reduce the cost, complexity, and lead time on missions by providing a reliable, well-characterized system that can carry a variety of payloads. According to NASA, "the spacecraft is roughly one tenth the price of a conventional uncrewed mission and could be used to land on the Moon, orbit Earth, or rendezvous with near-Earth objects." [1] [2]

Contents

History

The Modular Common Spacecraft Bus being tested in 2008 MCSB - LADEE.jpg
The Modular Common Spacecraft Bus being tested in 2008

The MCSB supervisor, Alan Weston, obtained from NASA Ames Research Center $4 million in internal funding to get the project started. Using that money, the prototype was built in about 15 months during 2007–2008. The fast concept development time is due in part to the preliminary use of repurposed SCUBA air tanks and an engine that uses cold gas, in place of a conventional rocket engine. This allowed the team to perform indoor flight tests as fast as every 40 minutes in their laboratory, rather than waiting weeks or months for a time slot at an appropriate rocket testing facility. [3] After a flight demonstration to top NASA officials, the system was selected as the bus for the planned Lunar Atmosphere and Dust Environment Explorer (LADEE) mission to the Moon, and the project awarded $80 million for further development and construction. [1]

On October 7, 2014, the MCSB design received the Popular Mechanics 2014 Breakthrough Award for innovation in science and technology. [4]

General description

Artist's depiction of the 2013 LADEE in lunar orbit LADEE w flare - cropped.jpg
Artist's depiction of the 2013 LADEE in lunar orbit

The modular MCSB spacecraft bus structure has a versatile octagonal shape that can carry up to 50 kg (110 lb) of instruments so long as they can fit inside. [3] The bus is made of a lightweight carbon composite and has the ability to perform on various kinds of missions, including voyages to the Moon and Near-Earth objects, with different modules or applicable systems. This modular concept is an innovative way of transitioning away from custom designs and toward multi-use designs and assembly-line production, which could dramatically reduce the cost of spacecraft development. [2] It can be adapted as an orbiter or a lander. [1]

Power

MCSB modules can carry solar cells on their eight side faces.[ citation needed ] On LADEE, electrical power was generated by a photovoltaic system composed of 30 panels of silicon solar cells producing 295 W at one AU. The solar panels were mounted on the satellite's exterior surfaces and the electrical energy was stored in one lithium-ion battery providing up to 24 A·hs at 28 V. [5]

Propulsion system

LADEE's propulsion system consists of an orbit control system (OCS) and a reaction control system (RCS). The OCS provides velocity control along the +Z axis for large velocity adjustments. The RCS provides three-axis attitude control during burns of the OCS system, and also provides momentum dumps for the reaction wheels which are the primary attitude control system between OCS burns. [6]

For LADEE, the bus was equipped with a 455 N High Performance Apogee Thruster (HiPAT) main engine. The high efficiency 22 N attitude control thrusters are manufactured using high temperature materials and similar to the HiPAT. The main engine provides the majority of the thrust for spacecraft trajectory correction maneuvers. The control system thrusters are used for small maneuvers planned for the science phase of the mission. [5]

Missions

NASA Ames Research Center states that the design concept is best for a lunar orbiter, a lunar lander, spacecraft at Earth-Moon Lagrange points, missions to near Earth objects (NEO) or as a Mars orbiter. [7]

See also

Related Research Articles

Phobos (moon) Larger, inner moon of Mars

Phobos is the innermost and larger of the two natural satellites of Mars, the other being Deimos. Both moons were discovered in 1877 by American astronomer Asaph Hall. Phobos is named after the Greek deity Phobos, a son of Ares (Mars) and twin brother of Deimos.

Deimos (moon) Smaller, outer moon of Mars

Deimos is the smaller and outermost of the two natural satellites of Mars, the other being Phobos. Deimos has a mean radius of 6.2 km (3.9 mi) and takes 30.3 hours to orbit Mars. Deimos is 23,460 km (14,580 mi) from Mars, much farther than Mars's other moon, Phobos. It is named after Deimos, the Ancient Greek god and personification of dread and terror, and who is also a son of Ares and Aphrodite and the twin brother of Phobos.

Lander (spacecraft) Type of spacecraft

A lander is a spacecraft that descends towards, comes to rest on, the surface of an astronomical body. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.

Phobos program 1988 Soviet missions to Mars

The Phobos program was an unmanned space mission consisting of two probes launched by the Soviet Union to study Mars and its moons Phobos and Deimos. Phobos 1 was launched on 7 July 1988, and Phobos 2 on 12 July 1988, each aboard a Proton-K rocket.

<i>Nozomi</i> (spacecraft) Failed Mars orbiter

Nozomi was a Mars orbiter that failed to reach Mars due to electrical failures. The mission was terminated on December 31, 2003.

Discovery Program Ongoing solar system exploration program by NASA

The Discovery Program is a series of Solar System exploration missions funded by the US National Aeronautics and Space Administration (NASA) through its Planetary Missions Program Office. The cost of each mission is capped at a lower level than missions from NASA's New Frontiers or Flagship Programs. As a result, Discovery missions tend to be more focused on a specific scientific goal rather than serving a general purpose.

The Lunar Precursor Robotic Program (LPRP) is a NASA program that uses robotic spacecraft to prepare for future manned missions to the Moon. The program gathers data such as lunar radiation, surface imaging, areas of scientific interest, temperature and lighting conditions, and potential resource identification.

Moons of Mars Natural satellites orbiting Mars

The two moons of Mars are Phobos and Deimos. They are irregular in shape. Both were discovered by American astronomer Asaph Hall in August 1877 and are named after the Greek mythological twin characters Phobos and Deimos who accompanied their father Ares into battle. Ares, god of war, was known to the Romans as Mars.

Low-energy transfer

A low-energy transfer, or low-energy trajectory, is a route in space that allows spacecraft to change orbits using significantly less fuel than traditional transfers. These routes work in the Earth–Moon system and also in other systems, such as between the moons of Jupiter. The drawback of such trajectories is that they take longer to complete than higher-energy (more-fuel) transfers, such as Hohmann transfer orbits.

LADEE Former NASA mission

The Lunar Atmosphere and Dust Environment Explorer was a NASA lunar exploration and technology demonstration mission. It was launched on a Minotaur V rocket from the Mid-Atlantic Regional Spaceport on September 7, 2013. During its seven-month mission, LADEE orbited around the Moon's equator, using its instruments to study the lunar exosphere and dust in the Moon's vicinity. Instruments included a dust detector, neutral mass spectrometer, and ultraviolet-visible spectrometer, as well as a technology demonstration consisting of a laser communications terminal. The mission ended on April 18, 2014, when the spacecraft's controllers intentionally crashed LADEE into the far side of the Moon, which, later, was determined to be near the eastern rim of Sundman V crater.

Minotaur V American expendable launch system

The Minotaur V is an American expendable launch system derived from the Minotaur IV, itself a derivative of the LGM-118 Peacekeeper ICBM. It was developed by Orbital Sciences Corporation, and made its maiden flight on 7 September 2013 carrying the Lunar Atmosphere and Dust Environment Explorer spacecraft for NASA.

Mars Orbiter Mission Indian Mars orbiter, launched in 2013

The Mars Orbiter Mission (MOM), also called Mangalyaan, is a space probe orbiting Mars since 24 September 2014. It was launched on 5 November 2013 by the Indian Space Research Organisation (ISRO). It is India's first interplanetary mission and it made it the fourth space agency to achieve Mars orbit, after Roscosmos, NASA, and the European Space Agency. It made India the first Asian nation to reach Martian orbit and the first nation in the world to do so on its maiden attempt.

Asteroid Redirect Mission 2013–2017 proposed NASA space mission

The Asteroid Redirect Mission (ARM), also known as the Asteroid Retrieval and Utilization (ARU) mission and the Asteroid Initiative, was a space mission proposed by NASA in 2013. The Asteroid Retrieval Robotic Mission (ARRM) spacecraft would rendezvous with a large near-Earth asteroid and use robotic arms with anchoring grippers to retrieve a 4-meter boulder from the asteroid.

Phobos And Deimos & Mars Environment NASA Mars orbiter mission concept

Phobos And Deimos & Mars Environment (PADME) is a low-cost NASA Mars orbiter mission concept that would address longstanding unknowns about Mars' two moons Phobos and Deimos and their environment.

BioSentinel US experimental astrobiology research satellite

BioSentinel is a planned low-cost CubeSat spacecraft on a astrobiology mission that will use budding yeast to detect, measure, and compare the impact of deep space radiation on DNA repair over long time beyond low Earth orbit.

Mars Base Camp Concept Mars orbiter

Mars Base Camp (MBC) is a crewed Mars laboratory orbiter concept under study that was commissioned by NASA from Lockheed Martin in US. It would use both future and proven concepts as well as the Orion MPCV, also built by Lockheed Martin.

Lunar Laser Communication Demonstration NASA laser communication system test in 2013

LADEE's Lunar Laser Communication Demonstration (LLCD) was a payload on NASA's Lunar Atmosphere and Dust Environment Explorer lunar orbiter.

Martian Moons eXploration (MMX) Planned sample-return mission by Japan to Phobos

The Martian Moons eXploration (MMX) is a robotic space probe set for launch in 2024 to bring back the first samples from Mars' largest moon Phobos. Developed by the Japanese Aerospace Exploration Agency (JAXA) and announced on 9 June 2015, MMX will land and collect samples from Phobos once or twice, along with conducting Deimos flyby observations and monitoring Mars' climate.

Power and Propulsion Element Power and propulsion module for the Gateway space station

The Power and Propulsion Element (PPE), previously known as the Asteroid Redirect Vehicle propulsion system, is a planned solar electric ion propulsion module being developed by Maxar Technologies for NASA. It is one of the major components of the Gateway. The PPE will allow access to the entire lunar surface and a wide range of lunar orbits and double as a space tug for visiting craft.

References

  1. 1 2 3 "Common Spacecraft Bus for Lunar Explorer Missions". NASA. NASA. 2007. Retrieved 2014-10-08.
  2. 1 2 "LADEE Spacecraft". NASA. Retrieved October 8, 2014.
  3. 1 2 Rowe, Aaron (May 7, 2008). "Exclusive Video: Meet the Spacecraft That Could Save NASA a Fortune". Wired Science (blog). Retrieved October 8, 2014.
  4. Brown, Dwayne; Hoover, Rachel (October 7, 2014). "NASA Lunar Mission Wins 2014 Popular Mechanics Breakthrough Award". NASA. Retrieved 2014-10-09.
  5. 1 2 "Press Kit: Lunar Atmosphere and Dust Environment Explorer (LADEE) Launch" (PDF). NASA. August 2013. Retrieved October 8, 2014.
  6. "Statement of Work – LADEE Spacecraft Propulsion System". NASA ARC. August 27, 2009. Archived from the original on May 4, 2015. Retrieved October 8, 2014.
  7. Ames Modular Common Spacecraft Bus. NASA Ames Research Center, 29 July 2016.
  8. Moon Express Lunar Scout (MX-1E), RocketLaunch.Live, archived from the original on 27 July 2019, retrieved 3 August 2019
  9. "Moon Express Technology". Google Lunar X-Prize. November 2010. Archived from the original on 2013-03-27.
  10. "The New Moon: Water, Exploration, and Future Habitation". By Arlin Crotts. Cambridge University Press, Sep 22, 2014. page 147. ISBN   9780521762243