Molecular graph

Last updated
Molecular structure of caffeine. Methyl groups are implied, but not visualized. Caffeine structure.svg
Molecular structure of caffeine. Methyl groups are implied, but not visualized.

In chemical graph theory and in mathematical chemistry, a molecular graph or chemical graph is a representation of the structural formula of a chemical compound in terms of graph theory. A chemical graph is a labeled graph whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. Its vertices are labeled with the kinds of the corresponding atoms and edges are labeled with the types of bonds. [1] For particular purposes any of the labelings may be ignored.

Contents

A hydrogen-depleted molecular graph or hydrogen-suppressed molecular graph is the molecular graph with hydrogen vertices deleted.

In some important cases (topological index calculation etc.) the following classical definition is sufficient: a molecular graph is a connected, undirected graph which admits a one-to-one correspondence with the structural formula of a chemical compound in which the vertices of the graph correspond to atoms of the molecule and edges of the graph correspond to chemical bonds between these atoms. [2] One variant is to represent materials as infinite Euclidean graphs, in particular, crystals as periodic graphs. [3]

History

Arthur Cayley was probably the first to publish results that consider molecular graphs as early as in 1874, even before the introduction of the term "graph". [4] For the purposes of enumeration of isomers, Cayley considered "diagrams" made of points labelled by atoms and connected by links into an assemblage. He further introduced the terms plerogram and kenogram, [5] which are the molecular graph and the hydrogen-suppressed molecular graph respectively. If one continues to delete atoms connected by a single link further, one arrives at a mere kenogram, possibly empty. [6]

Danail Bonchev in his Chemical Graph Theory traces the origins of representation of chemical forces by diagrams which may be called "chemical graphs" to as early as the mid-18th century. In the early 18th century, Isaac Newton's notion of gravity had led to speculative ideas that atoms are held together by some kind of "gravitational force". In particular, since 1758 Scottish chemist William Cullen in his lectures used what he called "affinity diagrams" to represent forces supposedly existing between pairs of molecules in a chemical reaction. In a 1789 book by William Higgins similar diagrams were used to represent forces within molecules. These and some other contemporary diagrams had no relation to chemical bonds: the latter notion was introduced only in the following century. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Chemical bond</span> Lasting attraction between atoms that enables the formation of chemical compounds

A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bonds" such as covalent, ionic and metallic bonds, and "weak bonds" or "secondary bonds" such as dipole–dipole interactions, the London dispersion force, and hydrogen bonding.

In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name since it does not contain any words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

<span class="mw-page-title-main">Graph theory</span> Area of discrete mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

<span class="mw-page-title-main">Molecule</span> Electrically neutral group of two or more atoms

A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and molecule is often used when referring to polyatomic ions.

In chemistry, a structural isomer of a compound is another compound whose molecule has the same number of atoms of each element, but with logically distinct bonds between them. The term metamer was formerly used for the same concept.

<span class="mw-page-title-main">Simplified molecular-input line-entry system</span> Chemical species structure notation

The simplified molecular-input line-entry system (SMILES) is a specification in the form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules.

<span class="mw-page-title-main">Structural formula</span> Graphic representation of a molecular structure

The structural formula of a chemical compound is a graphic representation of the molecular structure, showing how the atoms are possibly arranged in the real three-dimensional space. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types, which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis Structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections.

In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures into a resonance hybrid in valence bond theory. It has particular value for analyzing delocalized electrons where the bonding cannot be expressed by one single Lewis structure.

<span class="mw-page-title-main">Lewis structure</span> Diagrams for the bonding between atoms of a molecule and lone pairs of electrons

Lewis structures, also known as Lewis dot formulas,Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDS), are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule. A Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. The Lewis structure was named after Gilbert N. Lewis, who introduced it in his 1916 article The Atom and the Molecule. Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.

<span class="mw-page-title-main">Circuit rank</span> Fewest graph edges whose removal breaks all cycles

In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph. Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank r is easily computed using the formula

Mathematical chemistry is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. Mathematical chemistry has also sometimes been called computer chemistry, but should not be confused with computational chemistry.

In quantum chemistry, the quantum theory of atoms in molecules (QTAIM), sometimes referred to as atoms in molecules (AIM), is a model of molecular and condensed matter electronic systems in which the principal objects of molecular structure - atoms and bonds - are natural expressions of a system's observable electron density distribution function. An electron density distribution of a molecule is a probability distribution that describes the average manner in which the electronic charge is distributed throughout real space in the attractive field exerted by the nuclei. According to QTAIM, molecular structure is revealed by the stationary points of the electron density together with the gradient paths of the electron density that originate and terminate at these points.

<span class="mw-page-title-main">Tetrahedral molecular geometry</span> Central atom with four substituents located at the corners of a tetrahedron

In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are cos−1(−13) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group Td, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules can be chiral.

<span class="mw-page-title-main">Hosoya index</span> Number of matchings in a graph

The Hosoya index, also known as the Z index, of a graph is the total number of matchings in it. The Hosoya index is always at least one, because the empty set of edges is counted as a matching for this purpose. Equivalently, the Hosoya index is the number of non-empty matchings plus one. The index is named after Haruo Hosoya. It is used as a topological index in chemical graph theory.

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index, also known as a connectivity index, is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure.

In chemical graph theory, the Wiener index introduced by Harry Wiener, is a topological index of a molecule, defined as the sum of the lengths of the shortest paths between all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule.

<span class="mw-page-title-main">Isomer</span> Chemical compounds with the same molecular formula but different atomic arrangements

In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism is existence or possibility of isomers.

<span class="mw-page-title-main">Periodic graph (crystallography)</span>

In crystallography, a periodic graph or crystal net is a three-dimensional periodic graph, i.e., a three-dimensional Euclidean graph whose vertices or nodes are points in three-dimensional Euclidean space, and whose edges are line segments connecting pairs of vertices, periodic in three linearly independent axial directions. There is usually an implicit assumption that the set of vertices are uniformly discrete, i.e., that there is a fixed minimum distance between any two vertices. The vertices may represent positions of atoms or complexes or clusters of atoms such as single-metal ions, molecular building blocks, or secondary building units, while each edge represents a chemical bond or a polymeric ligand.

LiSiCA is a ligand-based virtual screening software that searches for 2D and 3D similarities between a reference compound and a database of target compounds which should be represented in a Mol2 format. The similarities are expressed using the Tanimoto coefficients and the target compounds are ranked accordingly. LiSiCA is also available as LiSiCA PyMOL plugin both on Linux and Windows operating systems.

A chemical graph generator is a software package to generate computer representations of chemical structures adhering to certain boundary conditions. The development of such software packages is a research topic of cheminformatics. Chemical graph generators are used in areas such as virtual library generation in drug design, in molecular design with specified properties, called inverse QSAR/QSPR, as well as in organic synthesis design, retrosynthesis or in systems for computer-assisted structure elucidation (CASE). CASE systems again have regained interest for the structure elucidation of unknowns in computational metabolomics, a current area of computational biology.

References

  1. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " molecular graph ". doi : 10.1351/goldbook.MT07069
  2. Chemical Applications of Topology and Graph Theory, ed. by R. B. King, Elsevier, 1983
  3. Sunada T. (2012), Topological Crystallography ---With a View Towards Discrete Geometric Analysis---", Surveys and Tutorials in the Applied Mathematical Sciences, Vol. 6, Springer
  4. A. Cayley, On the mathematical theory of isomers, Phil. Mag. , 1874, 47, 444-446, as quoted in N. L. Biggs, E. K. Lloyd and R. J. Wilson, "Graph Theory, 1736–1936", Clarendon Press , Oxford, 1976; Oxford University Press , 1986, ISBN   0-19-853916-9
  5. Derived from the Greek words πλήρης, pleres "full" and κενός, kenos "empty", respectively.
  6. Biggs, Lloyd, Wilson, p. 61
  7. Danail Bonchev (1991) "Chemical Graph Theory: Introduction and Fundamentals" ISBN   0-85626-454-7