Moondial

Last updated
Moondial at Queens' College, Cambridge, showing the table of corrections for the phase of the moon Moondial queens college.jpg
Moondial at Queens' College, Cambridge, showing the table of corrections for the phase of the moon

Moondials are time pieces similar to sundials. The most basic moondial is accurate only on the night of the full moon. Every night after that, it loses on average [lower-alpha 1] 48 minutes, while every night preceding the full moon it gains 48 minutes. Thus, one week to either side of the full moon, the moondial will read 5 hours and 36 minutes before or after the correct time. [ citation needed ]

Contents

More advanced moondials include charts showing the exact calculations to find the correct time, as well as dials designed with latitude and longitude.

Moondials are very closely associated with lunar gardening (night-blooming plants), and some comprehensive gardening books mention them.

See also

Notes

  1. The Moon's orbit is not circular, so it does not move around the Earth at a uniform rate. Thus while the average difference between moonrises is 48 minutes, the actual time can vary considerably (roughly 20min to 1hr50min depending on the time of year and the location of the Moon in its orbit). The time read by a moondial will also vary in a similar, though not so drastic manner.

Related Research Articles

<span class="mw-page-title-main">Apollo 8</span> First crewed space mission to orbit the Moon

Apollo 8 was the first crewed spacecraft to leave low Earth orbit and the first human spaceflight to reach the Moon. The crew orbited the Moon ten times without landing, and then departed safely back to Earth. These three astronauts—Frank Borman, James Lovell, and William Anders—were the first humans to witness and photograph the far side of the Moon and an Earthrise.

A day is the time period of a full rotation of the Earth with respect to the Sun. On average, this is 24 hours. As a day passes at a given location it experiences morning, noon, afternoon, evening, and night. This daily cycle drives circadian rhythms in many organisms, which are vital to many life processes.

A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and set "due west". This occurs twice each year, around 20 March and 23 September.

<span class="mw-page-title-main">Full moon</span> Lunar phase: completely illuminated disc

The full moon is the lunar phase when the Moon appears fully illuminated from Earth's perspective. This occurs when Earth is located between the Sun and the Moon. This means that the lunar hemisphere facing Earth—the near side—is completely sunlit and appears as an approximately circular disk. The full moon occurs roughly once a month.

<span class="mw-page-title-main">Lunar eclipse</span> Astronomical event

A lunar eclipse is an astronomical event that occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. Such an alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth's orbit.

<span class="mw-page-title-main">Lunar phase</span> Shape of the Moons sunlit portion as viewed from Earth

A lunar phase or Moon phase is the apparent shape of the Moon's directly sunlit portion as viewed from the Earth. In common usage, the four major phases are the new moon, the first quarter, the full moon and the last quarter; the four minor phases are waxing crescent, waxing gibbous, waning gibbous, and waning crescent. A lunar month is the time between successive recurrences of the same phase: due to the eccentricity of the Moon's orbit, this duration is not perfectly constant but averages about 29.5 days.

<span class="mw-page-title-main">Tide</span> Rise and fall of the sea level under astronomical gravitational influences

Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and are also caused by the Earth and Moon orbiting one another.

<span class="mw-page-title-main">Sidereal time</span> Timekeeping system on Earth relative to the celestial sphere

Sidereal time is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky. Sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars".

<span class="mw-page-title-main">Eclipse cycle</span> Calculation and prediction of eclipses

Eclipses may occur repeatedly, separated by certain intervals of time: these intervals are called eclipse cycles. The series of eclipses separated by a repeat of one of these intervals is called an eclipse series.

<span class="mw-page-title-main">Lunar day</span> Time for Moon to complete one rotation on its axis

A lunar day is the roughly 29 1/2 Earth days long period of time for Earth's Moon to complete on its axis one synodic rotation, meaning with respect to the Sun. The lunar day is therefore the time of a full lunar day-night cycle. Due to tidal locking this equals the time that the Moon takes to complete one synodic orbit around Earth, a synodic lunar month, returning to the same lunar phase. The synodic period is about 2.2 Earth days longer than its sidereal period.

<span class="mw-page-title-main">Lunar node</span> Where the orbit of the Moon intersects the Earths ecliptic

A lunar node is either of the two orbital nodes of the Moon, that is, the two points at which the orbit of the Moon intersects the ecliptic. The ascending node is where the Moon moves into the northern ecliptic hemisphere, while the descending node is where the Moon enters the southern ecliptic hemisphere.

<span class="mw-page-title-main">Blue moon</span> Common name for one of the full moons in a year with 13 full moons

A blue moon is an additional full moon that appears in a subdivision of a year: the third of four full moons in a season.

<span class="mw-page-title-main">Earth's orbit</span> Trajectory of Earth around the Sun

Earth orbits the Sun at an average distance of 149.60 million km in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes 365.256 days, during which time Earth has traveled 940 million km. Ignoring the influence of other Solar System bodies, Earth's orbit, also known as Earth's revolution, is an ellipse with the Earth-Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun.

<span class="mw-page-title-main">Night sky</span> Appearance of the sky in a clear night

The night sky is the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon.

A lunar standstill or lunistice is when the Moon reaches its furthest north or furthest south point during the course of a month. The declination at lunar standstill varies in a cycle 18.6 years long between 18.134° and 28.725°, due to lunar precession. These extremes are called the minor and major lunar standstills.

<span class="mw-page-title-main">Orbit of the Moon</span> The Moons circuit around Earth

The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days and one revolution relative to the Sun in about 29.53 days. Earth and the Moon orbit about their barycentre, which lies about 4,670 km (2,900 mi) from Earth's centre, forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about 385,000 km (239,000 mi) from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds.

<span class="mw-page-title-main">Mars hoax</span> Hoax claim about visibility of the planet Mars

The Mars hoax was a hoax circulated by e-mail that began in 2003, that claimed that Mars would look as large as the full Moon to the naked eye on August 27, 2003. The hoax has since resurfaced each time before Mars is at its closest to Earth, about every 26 months. It began from a misinterpretation and exaggeration of a sentence in an e-mail message that reported the close approach between Mars and the Earth in August 2003. At that time, the distance between the two planets was about 55,758,000 kilometres (34,646,000 mi), which was the closest distance between them since September 24, 57,617 BC, when the distance has been calculated to have been about 55,718,000 kilometres (34,622,000 mi).

<span class="mw-page-title-main">June 2029 lunar eclipse</span> Future lunar eclipse

A total lunar eclipse will take place between Monday and Tuesday, June 25-26, 2029. A central total eclipse lasting 1 hour and 41 minutes 53 seconds will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red color at maximum eclipse. It will be able to be seen from most of the Americas, Western Europe and Africa. The partial eclipse will last for 3 hours and 39 minutes 32 seconds in total.

A total lunar eclipse took place on Friday, August 6, 1971, the second of two total lunar eclipses in 1971. A dramatic total eclipse lasting 1 hour, 39 minutes and 24.8 seconds plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours, 35 minutes and 31.9 seconds in total. Occurring only 2.2 days before perigee, the Moon's apparent diameter was 3.6% larger than average and the moon passed through the center of the Earth's shadow.

<span class="mw-page-title-main">Lunar month</span> Time between successive new moons

In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month.

References

    Bibliography