Mormyrinae

Last updated

Mormyrinae
Gnathonemus petersii.jpg
The Peters' elephantnose fish, Gnathonemus petersii, has the largest brain-to-body weight ratio of all known vertebrates. [1]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Osteoglossiformes
Family: Mormyridae
Subfamily: Mormyrinae
Genera

see text

The subfamily Mormyrinae contains all but one of the genera of the African freshwater fish family Mormyridae in the order Osteoglossiformes. They are often called elephantfish due to a long protrusion below their mouths used to detect buried invertebrates that is suggestive of a tusk or trunk (some such as Marcusenius senegalensis gracilis are sometimes called trunkfish though this term is usually associated with an unrelated group of fish). They can also be called tapirfish.

Contents

Fish in this subfamily have a high brain to body mass ratio due to an expanded cerebellum (called a gigantocerebellum) used in their electroperception. [2] Linked to this they are notable for holding the zoological record at around 60% as the brains that consume the most energy as a percentage of the body's metabolic rate of any animal. [1] Previous to this discovery, it was the “human brain, which had been thought to hold the record in this respect”. [1] p. 605 The human brain in comparison uses only 20%. [3]

Mormyrinae is the largest subfamily in the Osteoglossiformes order with around 170 species.

Unique brain percentage of body energy consumption

The range with which the adult brain in all animals regardless of body size consumes energy as a percentage of the body's energy is roughly 2% to 8%. [3] The only exceptions of animal brains using more than 10% (in terms of O2 intake) are a few primates (11–13%) and humans. [3] However, research published in 1996 in The Journal of Experimental Biology by Göran Nilsson at Uppsala University found that mormyrinae brains utilize roughly 60% of their body O2 consumption. [1] This is due to the combination of large brain size (3.1% of body mass compared to 2% in humans) and them being ectothermic. [1]

The body energy expenditure of ectothermic animals is about 1/13 of that of endotherms but the energy expenditure of the brains of both ectothermic and endothermic animals are similar. [1] Other high brain percentage (2.6–3.7 % of the body mass) animals exist such as bats, swallows, crows and sparrows but these due to their endothermy also have high body energy metabolism. The unusual high brain energy consumption percentage of mormyrinae fish is thus due to them having the unusual combination of a large brain in a low energy consuming body. [1] The actual energy consumption per unit mass of its brain is not in fact particularly high and indeed lower (2.02 mg g1 h1) than that in some other fish such as Salmonidae (2.20 mg g−1 h−1). In comparison, that of rats is 6.02 mg g−1 h−1 and humans 2.61 mg g−1 h−1. [1] Table 1

The oxygen for this in low oxygen conditions comes from gulping air at the water surface. [1]

Large brains

Unlike mammals, the part of the brain enlarged in mormyrinae fish is the cerebellum [2] not the cerebrum and reflecting this is called a gigantocerebellum. [4] This enlarged cerebellum links to their electroreception. They generate weak electrical fields from specialized electric organ muscles. To detect these fields from those created by other mormyrinae fish, their prey animals, and how their nearby environment distorts them, their skin contains three types of electroreceptors. The electroperception they enable is used in hunting prey, electrolocation, and communication (Knollenorgans are the specialized electrical detection organs for this function). [5] This electroperception, however, requires complex information processing in special neurocircuitry since it is dependent upon the ability to distinguish between self-generated and other generated electric fields, and their self-created aspects and their environment modification. To enable this specialized information processing, with each self-generated electrical discharge, an efference copy of it is made for comparison with the detected electric field it creates. The cerebellum plays a key role in processing such efference copy dependent perception. [6] The muddy waters where they live has resulted in such electroperception playing a key role in their survival and this has resulted in their gigantocerebellum. [4]

Classification

The classification by osteology-based traits of Mormyridae into the two subfamilies of Mormyrinae and Petrocephalinae has been confirmed using molecular phylogeny methods. [7] The classification below comes from FishBase. [8]

Genyomyrus donnyi Genyomyrus donnyi.jpg

In culture

Bronze figurine of Oxyrhynchus fish, Late Period-Ptolemaic Egypt Oxyrhynchus fish Late Period-Ptolemaic (cropped).jpg
Bronze figurine of Oxyrhynchus fish, Late Period-Ptolemaic Egypt
The Medjed was a sacred fish in Ancient Egypt. At the city of Per-Medjed, better known as Oxyrhynchus, whose name means "sharp-nosed" after the fish, archaeologists have found fishes depicted as bronze figurines, mural paintings, or wooden coffins in the shape of fishes with downturned snouts, with horned sun-disc crowns like those of the goddess Hathor. The depictions have been described as resembling members of the genus Mormyrus . [9]

Related Research Articles

<span class="mw-page-title-main">Gymnotiformes</span> Order of bony fishes

The Gymnotiformes are an order of teleost bony fishes commonly known as Neotropical knifefish or South American knifefish. They have long bodies and swim using undulations of their elongated anal fin. Found almost exclusively in fresh water, these mostly nocturnal fish are capable of producing electric fields to detect prey, for navigation, communication, and, in the case of the electric eel, attack and defense. A few species are familiar to the aquarium trade, such as the black ghost knifefish, the glass knifefish, and the banded knifefish.

<span class="mw-page-title-main">Fish anatomy</span> Study of the form or morphology of fishes

Fish anatomy is the study of the form or morphology of fish. It can be contrasted with fish physiology, which is the study of how the component parts of fish function together in the living fish. In practice, fish anatomy and fish physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in living fish.

<span class="mw-page-title-main">Electric fish</span> Fish that can generate electric fields

An electric fish is any fish that can generate electric fields. Most electric fish are also electroreceptive, meaning that they can sense electric fields. The only exception is the stargazer family (Uranoscopidae). Electric fish, although a small minority of all fishes, include both oceanic and freshwater species, and both cartilaginous and bony fishes.

<span class="mw-page-title-main">Electroreception and electrogenesis</span> Biological electricity-related abilities

Electroreception and electrogenesis are the closely related biological abilities to perceive electrical stimuli and to generate electric fields. Both are used to locate prey; stronger electric discharges are used in a few groups of fishes to stun prey. The capabilities are found almost exclusively in aquatic or amphibious animals, since water is a much better conductor of electricity than air. In passive electrolocation, objects such as prey are detected by sensing the electric fields they create. In active electrolocation, fish generate a weak electric field and sense the different distortions of that field created by objects that conduct or resist electricity. Active electrolocation is practised by two groups of weakly electric fish, the Gymnotiformes (knifefishes) and the Mormyridae (elephantfishes), and by Gymnarchus niloticus, the African knifefish. An electric fish generates an electric field using an electric organ, modified from muscles in its tail. The field is called weak if it is only enough to detect prey, and strong if it is powerful enough to stun or kill. The field may be in brief pulses, as in the elephantfishes, or a continuous wave, as in the knifefishes. Some strongly electric fish, such as the electric eel, locate prey by generating a weak electric field, and then discharge their electric organs strongly to stun the prey; other strongly electric fish, such as the electric ray, electrolocate passively. The stargazers are unique in being strongly electric but not using electrolocation.

<span class="mw-page-title-main">Ampullae of Lorenzini</span> Sensory organs in some fish that detect electrical fields

Ampullae of Lorenzini are electroreceptors, sense organs able to detect electric fields. They form a network of mucus-filled pores in the skin of cartilaginous fish and of basal bony fishes such as reedfish, sturgeon, and lungfish. They are associated with and evolved from the mechanosensory lateral line organs of early vertebrates. Most bony fishes and terrestrial vertebrates have lost their ampullae of Lorenzini.

<span class="mw-page-title-main">Mormyridae</span> Family of fishes

The Mormyridae, sometimes called "elephantfish", are a superfamily of weakly electric fish in the order Osteoglossiformes native to Africa. It is by far the largest family in the order, with around 200 species. Members of the family can be popular, if challenging, aquarium species. These fish have a large brain size and unusually high intelligence.

<span class="mw-page-title-main">Peters's elephantnose fish</span> Species of fish

Peters's elephant-nose fish is an African freshwater elephantfish in the genus Gnathonemus. Other names in English include elephantnose fish, long-nosed elephant fish, and Ubangi mormyrid, after the Ubangi River. The Latin name petersii is probably for the German naturalist Wilhelm Peters. The fish uses electrolocation to find prey, and has the largest brain-to-body oxygen use ratio of all known vertebrates.

<span class="mw-page-title-main">Fish</span> Gill-bearing non-tetrapod aquatic vertebrates

A fish is an aquatic, craniate, gill-bearing animal that lacks limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of living fish species are ray-finned fish, belonging to the class Actinopterygii, with around 99% of those being teleosts.

<span class="mw-page-title-main">Electric organ (fish)</span> Organ in electric fish

In biology, the electric organ is an organ that an electric fish uses to create an electric field. Electric organs are derived from modified muscle or in some cases nerve tissue, and have evolved at least six times among the elasmobranchs and teleosts. These fish use their electric discharges for navigation, communication, mating, defence, and in strongly electric fish also for the incapacitation of prey.

<i>Gymnarchus</i> Genus of ray-finned fishes

Gymnarchus niloticus – commonly known as the aba, aba aba, frankfish, freshwater rat-tail, poisson-cheval, or African knifefish – is an electric fish, and the only species in the genus Gymnarchus and the family Gymnarchidae within the order Osteoglossiformes. It is found in swamps, lakes and rivers in the Nile, Turkana, Chad, Niger, Volta, Senegal, and Gambia basins.

<i>Marcusenius</i> Genus of ray-finned fishes

Marcusenius is a genus of the elephantfish group native to Africa. Its members are highly diverse in size, with the smallest species reaching less than 15 cm (6 in) and the largest more than 1 m (3.3 ft).

<i>Mormyrus</i> Genus of ray-finned fishes

Mormyrus is a genus of ray-finned fish in the family Mormyridae. They are weakly electric, enabling them to navigate, to find their prey, and to communicate with other electric fish.

<span class="mw-page-title-main">Knollenorgan</span>

A Knollenorgan is an electroreceptor in the skin of weakly electric fish of the family Mormyridae (Elephantfish) from Africa. The structure was first described by Viktor Franz (1921), a German anatomist unaware of its function. They are named after "Knolle", German for "tuberous root" which describes their structure.

In physiology, an efference copy or efferent copy is an internal copy of an outflowing (efferent), movement-producing signal generated by an organism's motor system. It can be collated with the (reafferent) sensory input that results from the agent's movement, enabling a comparison of actual movement with desired movement, and a shielding of perception from particular self-induced effects on the sensory input to achieve perceptual stability. Together with internal models, efference copies can serve to enable the brain to predict the effects of an action.

In neuroethology and the study of learning, anti-Hebbian learning describes a particular class of learning rule by which synaptic plasticity can be controlled. These rules are based on a reversal of Hebb's postulate, and therefore can be simplistically understood as dictating reduction of the strength of synaptic connectivity between neurons following a scenario in which a neuron directly contributes to production of an action potential in another neuron.

<span class="mw-page-title-main">Cornish jack</span> Species of ray-finned fish

The Cornish jack, Mormyrops anguilloides, is a species of weakly electric fish in the family Mormyridae, native to quiet waters in much of Sub-Saharan Africa. The largest species in its family, the Cornish jack is a nocturnal group hunter of smaller fishes, using electricity to locate its prey and communicate with other members of its group. It is a commercial game fish valued for its size and taste.

<i>Paramormyrops</i> Genus of ray-finned fishes

Paramormyrops is a genus of elephantfish in the family Mormyridae from Africa.

The following outline is provided as an overview of and topical guide to fish:

The expensive tissue hypothesis (ETH) relates brain and gut size in evolution. It suggests that in order for an organism to evolve a large brain without a significant increase in basal metabolic rate, the organism must use less energy on other expensive tissues; the paper introducing the ETH suggests that in humans, this was achieved by eating an easy-to-digest diet and evolving a smaller, less energy intensive gut. The ETH has inspired many research projects to test its validity in primates and other organisms.

<span class="mw-page-title-main">Mormyroidea</span>

The Mormyroidea are a superfamily of fresh water fishes endemic to Africa that, together with the families Hiodontidae, Osteoglossidae, Pantodontidae and Notopteridae, represents one of the main groups of living Osteoglossiformes. They stand out for their use of weak electric fields, which they use to orient themselves, reproduce, feed, and communicate.

References

  1. 1 2 3 4 5 6 7 8 9 Nilsson G (1996) "Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain" Journal of Experimental Biology, 199(3): 603-607. Download
  2. 1 2 Bell CC, Szabo T (1986). Electroreception in Mormyrid fish. Central Anatomy. pp. 375–421. In: Bullock TH, Heiligenberg W, (eds.), Electroreception. New York, Wiley ISBN   978-0-387-23192-1
  3. 1 2 3 Mink JW, Blumenschine RJ, Adams DB. (1981). Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol. 241(3):R203-12. PMID   7282965
  4. 1 2 Nieuwenhuys R. Nicholson, C. (1969). A survey of the general morphology, the fiber connections and the possible functional significance of the gigantocerebellum of mormyrid fishes. pp. 107–134. In Neurobiology of Cerebellar Evolution and Development. (ed. R. Llinás), American Medical Association. OCLC   174641159
  5. Friedman MA, Hopkins CD. (1998). Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish. J Neurosci. 18(3):1171-85. PMID   9437037
  6. Bell CC. (2002). Evolution of cerebellum-like structures. Brain Behav Evol. 59(5-6):312-26. PMID   12207086
  7. Lavoué S, Bigorne R, Lecointre G, Agnèse JF. (2000). Phylogenetic relationships of mormyrid electric fishes (Mormyridae; Teleostei) inferred from cytochrome b sequences.Mol Phylogenet Evol. 14(1):1-10. PMID   10631038
  8. Froese, Rainer, and Daniel Pauly, eds. (2018). "Mormyridae" in FishBase . May 2018 version.
  9. Van Neer, Wim; Gonzalez, Jérôme (2019). "A Late Period fish deposit at Oxyrhynchus (el-Bahnasa, Egypt)". In Peters, Joris; McGlynn, George; Goebel, Veronika (eds.). Documenta Archaeobiologiae Animals: Cultural Identifiers In Ancient Societies? (PDF). Rahden, Westfalia, Germany: Verlag Marie Leidorf. ISBN   978-3-89646-674-7.