Museum environments

Last updated

Museum environment issues include temperature, humidity, light, atmospheric pollutants, and dust, which are typically controlled in buildings that contain collections of cultural and scientific significance. These environmental factors are all 'agents of deterioration' that cause damage to objects, as they play a role in deterioration pathways such as oxidation, hydrolysis, cross-linking and chain scission.[ citation needed ]

Contents

Conservators, collection managers and facility managers often work together to control the environments in which cultural heritage is stored, transported, and displayed. As the conservation-restoration profession has developed, various environmental recommendations or guidelines have emerged. The temperature and relative humidity range considered acceptable in any one cultural organisation may vary according to the type of building, the presence and type of air conditioning systems, and the types of collection material present. Many collecting organisations will also expect these conditions to be maintained during transport and when collection objects are on loan to other organisations (as part of a loan agreement).[ citation needed ]

Published environmental guidelines for museums tend to minimise both extremes and fluctuations of temperature and relative humidity. Increasingly, the benefits of environmental controls for museum collections are balanced against the energy and environmental costs of maintaining relatively tight parameters. Published guidelines now also take a more holistic approach by taking local conditions into account – e.g., that it may not be possible or appropriate for a museum located in the tropics to maintain an environment more typical of temperate regions.[ citation needed ]

Sustainable energy use

Heritage machinery

Maintaining and displaying the functional capability of a mechanical heritage object enables audiences to immerse themselves in the sensory experience of the display, which imparts information about scientific and technological advances and allows people to make personal connections with the machines. [1] Operating heritage machinery also helps to keep physical components in good condition, and provides opportunities for preserving and passing on the customs and knowledge held by communities of practice who work with heritage machines. Much of this is tacit and embodied knowledge that, like riding a bicycle, has to be learnt through physical experience and practice.

Heritage machines mostly run on fossil fuels, though, which means that they rely on environmentally damaging extraction processes, emit greenhouse gases (and other pollutants), and usually leak lubricating oils.  This raises the ethical question of whether operating these machines is important enough to justify their environmental impacts, and the practical question of whether the fossil fuels and lubricants they require will continue to be available/affordable for the heritage sector as the extraction, refining and distribution of these materials is reduced and/or eliminated.

Through the development of sustainability policies, heritage machinery collections can employ strategies to ensure that these cultural heritage objects continue to get exposure for generations to come.

Strategies for sustainability policies

Offset emission

While the emissions from heritage machines are unavoidable, carbon offsetting is a strategy that counteracts the environmental impact of running the machine as a functional display. Such offsetting strategies include:

  • Carbon credit purchases: in which cash is exchanged for carbon credits, with each credit equating to one metric tonne of carbon dioxide (CO2) equivalent that has been stored or avoided by a project. [2] In Australia, Climate Active provides guidelines and minimum standards for calculating and auditing offsets.
  • Community partnership projects, in which the institution or collection runs or participates in greenhouse gas abatement activities or projects which are eligible for the issue of carbon credits. An example of such a project is the Sustainable Destination Partnership, in which the Australian Museum is a founding member.
  • Museum environment emission reduction: Is achievable through making changes to the building envelope; such as the use of rainwater tanks, solar panels, grey water tanks, closed loop hydraulic or air pressure systems or planting trees for passive climate control. [3]
  • Emissions sold as a product: in which there is a direct capture of CO2 (DAC) from the site of emission to be resold and recycled into chemicals or fuel. [4] [5] For further reading on the economic viability of CO2 emission sale, see the Columbia University 2021 report.
Run sustainable

In situations where it is socially, economically and ethically viable to reduce or negate emissions, the following strategies may apply:

  • Make a replica: The production of a replica, as either a static cut-away display or as a dynamic machine run on cleaner energy, can demonstrate the mechanical principles of the heritage machine; thus reducing the need to run the original heritage object.
  • Leave as static exhibit: By reducing or stopping altogether the machines running time, the cost of maintenance and energy is saved, while the machine can remain in-situ unmodified for the enjoyment of future generations. However, this action requires careful consideration for while all fluids can be drained by the machine for a clean display, some machines will seize without regular lubrication, with a seized machine risking non-functionality in future situations.
  • Modify exhibit setup: Some machines can be turned into closed-loop systems which can reduce the running wastage and resource cost. However, careful consideration must be undertaken as heritage machines were not designed to function in a close loop and such a setup can risk voiding warranties and increasing maintenance costs due to fouling and corrosion.
  • Modify heritage object: This is by far the most drastic strategy, for while machines are adapted or changed to meet functional requirements during their working lives, [6] the intentional modification of heritage objects runs the risk of violating a heritage institution's and or a conservator's code of ethics and best practices. [7] However, without modifications to reduce emissions or resource consumption, some machines may lose their cultural relevance through lack of awareness, appreciation and respect born out of an audience's lack of exposure [8]
Relocation and collaboration
  • Transfer stewardship: through a loan or Memorandum of understanding with an appropriate Special Interest Group (SIG) or association, with the understanding that the item will be returned and or re-donated to the museum after a specific time period.
    • In exchange for transferring stewardship and cost to public organizations and private collections, a museum can commit to providing advice and or training on significance assessments, fund sourcing, conservation & restoration practices & technical skills to maintain object, thus counteracting shortfalls in the Industrial Heritage's volunteer sector [9]
  • Decommission & document: Create a digital archive of associated machinery information, photographs, schematics, oral history recordings, rather than preserving physical objects.
International Special Interest Groups (SIG) for Heritage Machinery conservation
Name
The International Committee for the Conservation of the Industrial Heritage (TICCIH)
Big Stuff Heritage
Scottish Transport & Industry Collections Knowledge Network (STICK)

Museum environments – early examples

During the first half of the twentieth century, many organisations and individuals noted parallels between temperature, relative humidity (RH) and the condition of objects in museum collections. Gradually, relative humidity levels between 50% and 60% became preferred, for example after observing that paintings and other collection items from Britain's National Gallery showed no further damage while stored in environmentally stable caves (58% RH) during World War II but began to crack and flake when returned to the National Gallery in London, which did not have air conditioning until 1949. Hence, when air conditioning was introduced, 58% RH was chosen as the target value. A survey conducted by Harold Plenderleith in 1960 found that most museums aimed for or experienced RH values between 50 and 60%. [10]

The Arrhenius equation, first published in 1889, has also been influential in the development of museum environmental recommendations. Broadly, the equation shows that for every 10 °C increase in temperature, the rate of chemical reactions will double. [11]

The Museum Environment

Garry Thomson's 1978 publication The Museum Environment [12] was a major influence in the development of environmental guidelines for cultural organisations and the field of preventive conservation. Though critical analysis shows that Thompson did not intend for his recommended parameters for temperature and relative humidity to become 'rules', nevertheless over the subsequent decade 50% ±5 RH and 21 °C / 70 °F ±2 became the default and preferred parameters for the international community. They became a particularly convenient standard for loan agreements. [10] [13]

Material-specific recommendations

Research in the 1990s and 2000s lead towards more nuanced environmental recommendations for different classes of objects and materials, based on their sensitivities. There was greater consideration of both the chemical and mechanical effects of temperature and RH.

In 1993 the Image Permanence Institute released The IPI Storage Guide for Acetate Film, written by James Reilly. Based on accelerated ageing tests, this resource showed how lowering the temperature and RH could prolong the useful life of cellulose acetate film. [14] [15] [16]

In the mid-1990s, researchers at the Conservation Analytical Lab of the Smithsonian Institution conducted research to characterise the response of wood, canvas paintings, acrylic paints, photographic emulsions and paper to fluctuations in RH, leading to more specific recommendations for allowable RH fluctuations. For example, their research found that oil and acrylic paints were susceptible to cold temperatures but little affected by RH. However, other elements in 'layered' objects such as paintings may be vulnerable to RH change, such as gesso ground layers underneath the paint, or wooden or canvas substrates. This research also drew attention to the energy costs of tight environmental controls. [17] [18] [19] [20] [21] [22]

Researchers at the Canadian Conservation Institute (CCI) also developed more nuanced guidelines for temperature and RH, categorising materials as low, medium or highly sensitive to specified parameters and specifying critical levels beyond which chemical, biological or physical change would occur. For example, at 50% RH and 20 °C a chemically stable format like black and white photographic negatives on glass is expected to have a useful life of about 300 years, compared to 1500 years at 10% RH and 20 °C. In comparison, chemically unstable materials like magnetic media formats (audio and video cassettes) are expected to have between 10 and 50 years at 50% and 10% RH respectively. [23] A moderately sensitive material might last 150 years in a warm room (25 °C) but 6,000 years at 0 °C. Waxy materials soften above 30°C (an issue for wax-lined paintings); many plastics distort above 60 °C (PET, acrylic, Nylon, ABS). Conversely, below 5 °C many paint materials enter a glassy phase that makes them more susceptible to physical damage. [24]

Bizot Green Protocol

In 2015 the Bizot Group, also known as the International Group of Organizers of Large-Scale Exhibitions, released the Bizot Green Protocol, shifting museum environment recommendations towards mutual understandings between borrowers and lenders and factoring in more specific requirements of different categories of objects. The Green Protocol also recognised the environmental 'history' of collection objects, in that they may have experienced very different environmental conditions before they became part of a museum collection. In general, the Green Protocol called for wider parameters than those taken from Thomson's work, suggesting a range of 40-60% relative humidity and a stable temperature in the range 16-25 °C with fluctuations of no more than ±10% RH per 24 hours.g. [25] [26] [27]

ICOM-CC and IIC joint statement

In 2014 the International Council of Museums Conservation Committee (ICOM-CC) and the International Institute for Conservation (IIC) released a joint statement calling for sustainability and climate change to be integral considerations within museum environmental guidelines, while acknowledging the complexity of the science and relationships involved. The declaration called for transparency in loan agreements, in terms of what environmental controls are achievable and reasonable, especially when most museums worldwide do not have mechanical climate control systems. [28] [29]

AICCM

In 2018, the Australian Institute for the Conservation of Cultural Materials ratified new environmental guidelines for cultural collections and endorsed the Heritage Collections Council (HCC) Guidelines for Environmental Control in Cultural Institutions published in 2002. The AICCM guidelines endorsed the calls of ICOM-CC and IIC for temperature and relative humidity guidelines to be achievable for the local climate, seek to reduce environmental impact and to prioritise passive control solutions and low-energy technology wherever possible. [30]

ASHRAE climate specifications

The climate specifications of the Applications Handbook of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) provide a range of settings for museums, galleries, archives, and libraries based on the sensitivity of the collections and the architectural setting, which also include a description of the commensurate risks and benefits of each setting. As it was regarded that a single standard would not be a suitable option for all collections, and considering the challenge and high cost of maintaining stringent environmental control, five classes of control were created, namely: Class AA, Class A, Class B, Class C, and Class D. Temperature and relative humidity set points or annual average and allowable short fluctuations for each class are as follows: [31] [32] [33]

AIC's Interim Environmental Guidelines

The Environmental Guidelines Working Group of the American Institute for Conservation of Historic & Artistic Works (AIC) developed the Interim Environmental Guidelines following the roundtable discussions in 2010 held in Boston and Milwaukee, where conservation professionals and representatives from the cultural heritage profession shared about their practices and experiences related to collections climatology and discussed how the environmental parameters can adapt to challenges in the global economy and stewardship of natural resources. The interim guidelines recommend a set point in the range of 45-55% RH with an allowable fluctuation of +/- 5% and 15-25oC (59-77oF) temperature. [27] [32]

Related Research Articles

<span class="mw-page-title-main">Conservation and restoration of cultural property</span> Process of protecting cultural property

The conservation and restoration of cultural property focuses on protection and care of cultural property, including artworks, architecture, archaeology, and museum collections. Conservation activities include preventive conservation, examination, documentation, research, treatment, and education. This field is closely allied with conservation science, curators and registrars.

<span class="mw-page-title-main">Collection (museum)</span> The group of objects owned by a museum

A museum is distinguished by a collection of often unique objects that forms the core of its activities for exhibitions, education, research, etc. This differentiates it from an archive or library, where the contents may be more paper-based, replaceable and less exhibition oriented, or a private collection of art formed by an individual, family or institution that may grant no public access. A museum normally has a collecting policy for new acquisitions, so only objects in certain categories and of a certain quality are accepted into the collection. The process by which an object is formally included in the collection is called accessioning and each object is given a unique accession number.

<span class="mw-page-title-main">Preservation (library and archive)</span> Set of activities aimed at prolonging the life of a record or object

In conservation, library and archival science, preservation is a set of preventive conservation activities aimed at prolonging the life of a record, book, or object while making as few changes as possible. Preservation activities vary widely and may include monitoring the condition of items, maintaining the temperature and humidity in collection storage areas, writing a plan in case of emergencies, digitizing items, writing relevant metadata, and increasing accessibility. Preservation, in this definition, is practiced in a library or an archive by a conservator, librarian, archivist, or other professional when they perceive a collection or record is in need of maintenance.

<span class="mw-page-title-main">Conservation science (cultural property)</span>

With respect to cultural property, conservation science is the interdisciplinary study of the conservation of art, architecture, technical art history and other cultural works through the use of scientific inquiry. General areas of research include the technology and structure of artistic and historic works. In other words, the materials and techniques from which cultural, artistic and historic objects are made.

<span class="mw-page-title-main">Conservator-restorer</span> Professional responsible for the preservation of artistic and cultural artifacts

A conservator-restorer is a professional responsible for the preservation of artistic and cultural artifacts, also known as cultural heritage. Conservators possess the expertise to preserve cultural heritage in a way that retains the integrity of the object, building or site, including its historical significance, context and aesthetic or visual aspects. This kind of preservation is done by analyzing and assessing the condition of cultural property, understanding processes and evidence of deterioration, planning collections care or site management strategies that prevent damage, carrying out conservation treatments, and conducting research. A conservator's job is to ensure that the objects in a museum's collection are kept in the best possible condition, as well as to serve the museum's mission to bring art before the public.

<span class="mw-page-title-main">Conservation and restoration of metals</span> Material preservation activity

Conservation and restoration of metals is the activity devoted to the protection and preservation of historical and archaeological objects made partly or entirely of metal. In it are included all activities aimed at preventing or slowing deterioration of items, as well as improving accessibility and readability of the objects of cultural heritage. Despite the fact that metals are generally considered as relatively permanent and stable materials, in contact with the environment they deteriorate gradually, some faster and some much slower. This applies especially to archaeological finds.

Conservation and restoration of movable cultural property is a term used to denote the conservation of movable cultural property items in libraries, archives, museums and private collections. Conservation encompasses all the actions taken toward the long-term preservation of cultural heritage. Activities include examination, documentation, treatment, and preventive care, which is supported by research and education. Object conservation is specifically the actions taken to preserve and restore cultural objects. The objects span a wide range of materials from a variety of cultures, time periods, and functions. Object conservation can be applied to both art objects and artifacts. Conservation practice aims to prevent damage from occurring, a process known as 'preventive conservation'. The purpose of preventive conservation is to maintain, and where possible enhance, the condition of an object, as well as managing deterioration risks, such as handling and environmental conditions. Historically, object conservation was focused on the category of fine arts but now many different types of objects are conserved. Each type of object material, typically denoted by organic or inorganic then the specific medium, requires a specialized professional conservator and often requires collaborative work between museum staff, scientists, and conservators.

<span class="mw-page-title-main">Collections maintenance</span>

Collection maintenance is an area of collections management that consists of the day-to-day hands on care of collections and cultural heritage. The primary goal of collections maintenance or preventive conservation is to prevent further decay of cultural heritage by ensuring proper storage and upkeep including performing regular housekeeping of the spaces and objects and monitoring and controlling storage and gallery environments. Collections maintenance is part of the risk management field of collections management. The professionals most involved with collections maintenance include collection managers, registrars, and archivists, depending on the size and scope of the institution. Collections maintenance takes place in two primary areas of the museum: storage areas and display areas.

<span class="mw-page-title-main">Collections management</span> Process of overseeing a collection, including acquisition, curation, and deaccessioning

Collections management involves the development, storage, and preservation of cultural property, as well as objects of contemporary culture in museums, libraries, archives and private collections. The primary goal of collections management is to meet the needs of the individual collector or collecting institution's mission statement, while also ensuring the long-term safety and sustainability of the cultural objects within the collector's care. Collections management, which consists primarily of the administrative responsibilities associated with collection development, is closely related to collections care, which is the physical preservation of cultural heritage. The professionals most influenced by collections management include collection managers, registrars, and archivists.

<span class="mw-page-title-main">Objects conservator</span>

An Objects conservator is a professional, working in a museum setting or private practice, that specializes in the conservation of three-dimensional works. They undergo specialized education, training, and experience that allows them to formulate and implement preventive strategies and invasive treatment protocols to preserve cultural property for the future. Objects conservators typically specialize in one type of material or class of cultural property, including metals, archaeological artifacts, ethnographic artifacts, glass, and ceramic art. Objects conservation presents many challenges due to their three-dimensional form and composite nature.

<span class="mw-page-title-main">Disaster preparedness (cultural property)</span> Preserving and protecting cultural artifact collections

Disaster preparedness in museums, galleries, libraries, archives and private collections, involves any actions taken to plan for, prevent, respond or recover from natural disasters and other events that can cause damage or loss to cultural property. 'Disasters' in this context may include large-scale natural events such as earthquakes, flooding or bushfire, as well as human-caused events such as theft and vandalism. Increasingly, anthropogenic climate change is a factor in cultural heritage disaster planning, due to rising sea levels, changes in rainfall patterns, warming average temperatures, and more frequent extreme weather events.

<span class="mw-page-title-main">Conservation and restoration of plastic objects</span>

Conservation and restoration of objects made from plastics is work dedicated to the conservation of objects of historical and personal value made from plastics. When applied to cultural heritage, this activity is generally undertaken by a conservator-restorer.

<span class="mw-page-title-main">Photograph conservator</span> Professional who examines photographs

A photograph conservator is a professional who examines, documents, researches, and treats photographs, including documenting the structure and condition of art works through written and photographic records, monitoring conditions of works in storage and exhibition and transit environments. This person also performs all aspects of the treatment of photographs and related artworks with adherence to the professional Code of Ethics.

<span class="mw-page-title-main">Conservation and restoration of Tibetan thangkas</span> Preservation of traditional religious Tibetan scroll painting

The conservation and restoration of Tibetan thangkas is the physical preservation of the traditional religious Tibetan painting form known as a thangka. When applied to thangkas of significant cultural heritage, this activity is generally undertaken by a conservator-restorer.

<span class="mw-page-title-main">Cultural property storage</span>

The cultural property storage typically falls to the responsibility of cultural heritage institutions, or individuals. The proper storage of these objects can help to ensure a longer lifespan for the object with minimal damage or degradation. With so many different types of artifacts, materials, and combinations of materials, keepers of these artifacts often have considerable knowledge of the best practices in storing these objects to preserve their original state.

<span class="mw-page-title-main">Conservation and restoration of feathers</span> Process of protecting feathers

The conservation and restoration of feathers is the practice of maintaining and preserving feathers or featherwork objects, and requires knowledge of feather anatomy, properties, specialized care procedures, and environmental influences. This practice may be approached through preventive and/or interventive techniques.

<span class="mw-page-title-main">Conservation and restoration of paintings</span>

The conservation and restoration of paintings is carried out by professional painting conservators. Paintings cover a wide range of various mediums, materials, and their supports. Painting types include fine art to decorative and functional objects spanning from acrylics, frescoes, and oil paint on various surfaces, egg tempera on panels and canvas, lacquer painting, water color and more. Knowing the materials of any given painting and its support allows for the proper restoration and conservation practices. All components of a painting will react to its environment differently, and impact the artwork as a whole. These material components along with collections care will determine the longevity of a painting. The first steps to conservation and restoration is preventive conservation followed by active restoration with the artist's intent in mind.

The conservation-restoration of panel paintings involves preventive and treatment measures taken by paintings conservators to slow deterioration, preserve, and repair damage. Panel paintings consist of a wood support, a ground, and an image layer. They are typically constructed of two or more panels joined together by crossbeam braces which can separate due to age and material instability caused by fluctuations in relative humidity and temperature. These factors compromise structural integrity and can lead to warping and paint flaking. Because wood is particularly susceptible to pest damage, an IPM plan and regulation of the conditions in storage and display are essential. Past treatments that have fallen out of favor because they can cause permanent damage include transfer of the painting onto a new support, planing, and heavy cradling. Today's conservators often have to remediate damage from previous restoration efforts. Modern conservation-restoration techniques favor minimal intervention that accommodates wood's natural tendency to react to environmental changes. Treatments may include applying flexible battens to minimize deformation or simply leaving distortions alone, instead focusing on preventive care to preserve the artwork in its original state.

<span class="mw-page-title-main">Conservation and restoration of wooden artifacts</span>

The conservation and restoration of wooden artifacts refers to the preservation of art and artifacts made of wood. Conservation and restoration in regards to cultural heritage is completed by a conservator-restorer.

<span class="mw-page-title-main">Agents of deterioration</span>

The 'ten agents of deterioration' are a conceptual framework developed by the Canadian Conservation Institute (CCI) used to categorise the major causes of change, loss or damage to cultural heritage objects. Also referred to as the 'agents of change', the framework was first developed in the late 1980s and early 1990s. The defined agents reflect and systematise the main chemical and physical deterioration pathways to which most physical material is subject. They are a major influence on the applied practice of conservation, restoration, and collection management, finding particular use in risk management for cultural heritage collections.

References

  1. Pye, Elizabeth (2016). "Challenges of conservation: working objects". Science Museum Group Journal. 6 (6). doi: 10.15180/160608 . S2CID   113775680.
  2. "Australian carbon credit units". www.cleanenergyregulator.gov.au. Retrieved 2021-11-10.
  3. Pearson, Colin; King, Steve (2000-01-01). "Passive Environmental Control for Small Cultural Institutions in Australia". Australian Academic & Research Libraries. 31 (2): 69–78. doi: 10.1080/00048623.2000.10755117 . ISSN   0004-8623.
  4. Xu, Xiaoyin; Martin, Gregory J. O.; Kentish, Sandra E. (2019-12-01). "Enhanced CO2 bio-utilization with a liquid–liquid membrane contactor in a bench-scale microalgae raceway pond". Journal of CO2 Utilization. 34: 207–214. doi:10.1016/j.jcou.2019.06.008. hdl: 11343/227156 . ISSN   2212-9820. S2CID   197625062.
  5. Kiani, Ali; Jiang, Kaiqi; Feron, Paul (2020). "Techno-Economic Assessment for CO2 Capture From Air Using a Conventional Liquid-Based Absorption Process". Frontiers in Energy Research. 8: 92. doi: 10.3389/fenrg.2020.00092 . ISSN   2296-598X.
  6. "The Tod Head lighthouse lantern. The conservation-restoration of a technical object that has been continuously modified over the years". Big Stuff Heritage. Retrieved 2021-11-10.
  7. admin. "Code of Ethics and Practice". Australian Institute for the Conservation of Cultural Material. Retrieved 2021-11-10.
  8. Australian Heritage Council (2018). Protection of Australia's Commemorative Places and Monuments (PDF). Commonwealth of Australia. pp. 3–6.
  9. Meyers, Neil. "The protection of industrial movable cultural heritage and the role of volunteer organisations in Australia" (PDF). Big Stuff Heritage. Retrieved 10 November 2021.
  10. 1 2 "Environmental Guidelines – Wiki". www.conservation-wiki.com. 12 May 2020.
  11. N. S. BAER and N. INDICTOR (1978). "Use of the Arrhenius Equation in Multicomponent Systems". Preservation of Paper and Textiles of Historic and Artistic Value. Advances in Chemistry. 164: 336–351. doi:10.1021/ba-1977-0164.ch022. ISBN   9780841203600.
  12. Thomson, Garry (November 10, 1978). The museum environment. Butterworths. OCLC   4076268 via Open WorldCat.
  13. Taylor, Joel; Boersma, Foekje (August 1, 2018). "Managing Environments for Collections: The Impact of International Loans on Sustainable Climate Strategies". Studies in Conservation. 63 (sup1): 257–261. doi: 10.1080/00393630.2018.1504514 . S2CID   191508066.
  14. https://s3.cad.rit.edu/ipi-assets/publications/acetate_guide.pdf [ bare URL PDF ]
  15. Erhardt, W. David and Mecklenburg, Marion F (1994). "Relative humidity re-examined". Preventive Conservation: Practice, Theory and Research (Preprints of the Contributions to the Ottawa Congress, 12–16 September 1994): 32–38. hdl:10088/35952.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Tumosa, Charles S.;Erhardt, W. David;Mecklenburg, Marion F.;McCormick-Goodhart, Mark H. (1995). "The Effects of Relative Humidity and Temperature on Exhibited Objects". Special ICOM Study Series. 9.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. Magazine, Smithsonian; Kernan, Michael. "Around the Mall & Beyond". Smithsonian Magazine.
  18. Erhardt, W. David;Mecklenburg, Marion F.;Tumosa, Charles S.;McCormick-Goodhart, Mark H. (1995). "The Determination of Allowable RH Fluctuations". WAAC Newsletter. 17 (1): 19–23.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. Erhardt, David;Mecklenburg, Marion F.;Tumosa, Charles S.;McCormick-Goodhart, Mark H. (1997). "The Determination of Appropriate Museum Environments". The Interface Between Science and Conservation (British Museum Occasional Paper No. 116): 153–163. hdl:10088/35940.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Mecklenburg, Marion F.;Tumosa, Charles S.;Erhardt, W. David (1998). "Structural Response of Painted Wood Surfaces to Changes in Ambient Relative Humidity". Painted Wood: History and Conservation: 464–483. hdl:10088/35942.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Tumosa, Charles S.;Mecklenburg, Marion F.;Erhardt, W. David;McCormick-Goodhart, Mark H. (1996). "A Discussion of Research on the Effects of Temperature and Relative Humidity on Museum Objects". WAAC Newsletter. 18 (3): 19–20. hdl:10088/10312.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. Erhardt, W. David;Mecklenburg, Marion F. (1994). "Relative humidity re-examined". Preventive Conservation: Practice, Theory and Research (Preprints of the Contributions to the Ottawa Congress, 12–16 September 1994): 32–38. hdl:10088/35952.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. Michalski, Stefan (22 September 2017). "Agents of Deterioration: Incorrect relative humidity". Canadian Conservation Institute. Retrieved 2021-11-09.
  24. Michalski, Stefan (22 September 2017). "Agents of Deterioration: Incorrect Temperature". Canadian Conservation Institute. Retrieved 2021-11-09.
  25. "Environmental Sustainability – Reducing Museums' Carbon Footprint – National Museum Directors' Council Website". www.nationalmuseums.org.uk.
  26. "Environmental Sustainability – Reducing Museums' Carbon Footprint – National Museum Directors' Council Website". www.nationalmuseums.org.uk. Retrieved 2021-11-10.
  27. 1 2 Bickersteth, Julian (2016). "IIC and ICOM-CC 2014 declaration on environmental guidelines". Studies in Conservation. 61: 12–17. doi: 10.1080/00393630.2016.1166018 . S2CID   193509888.
  28. "Declaration on Environmental Guidelines – ICOM-CC". www.icom-cc.org.
  29. "IIC announces declaration on Environmental Guidelines | International Institute for Conservation of Historic and Artistic Works". www.iiconservation.org.
  30. "Environmental Guidelines".
  31. Ulas, Emrah Baki; Crampton, Richard; Tennant, Fiona; Bickersteth, Julian (2013). A practical guide for sustainable climate control and lighting in museums and galleries. Sydney: International Conservation Services. pp. 54–56. ISBN   9780646936871.
  32. 1 2 "Environmental Guidelines – Wiki". www.conservation-wiki.com. Retrieved 2021-11-10.
  33. Michalski, Stefan (2016). "Climate guidelines for heritage collections: where we are in 2014 and how we got here". Proceedings of the Smithsonian Institution Summit on the Museum Preservation Environment. Smithsonian Institution Scholarly Press: 7–32.

Further reading