Mycoplasma bovis

Last updated

Mycoplasma bovis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Mycoplasmatota
Class: Mollicutes
Order: Mycoplasmatales
Family: Mycoplasmataceae
Genus: Mycoplasma
Species:
M. bovis
Binomial name
Mycoplasma bovis
(Hale et al. 1962) Askaa and Ernø 1976 (Approved Lists 1980)

Mycoplasma bovis is one of 126 species of genus Mycoplasma . It is the smallest living cell and anaerobic organism in nature. It does not contain any cell wall and is therefore resistant to penicillin and other beta lactam antibiotics.

Contents

Mycoplasma bovis mainly affects cattle and has little effect on other production animals. It does not affect horses and or pet animals, but other animals can be carriers for Mycoplasma bovis. [1] Wyoming Game and Fish is reporting that the North American pronghorn is now affected by the disease with very high mortality. Mycoplasma bovis causes a constellation of diseases, including mastitis in dairy cows, arthritis in cows and calves, pneumonia in calves, and various other diseases likely including late-term abortion. Not all infected cows get sick – some shed the disease without becoming ill, allowing for transmission between farms if apparently healthy cows are moved. [2]

Signs and symptoms

Mastitis

Gangrenous mastitis in a cow, Day 10; green arrow : complete necrosis of the teat; yellow arrows : limits of the gangrenous tissue, but the necrotic area is not well delimited on the upper part of the udder Mamite a grangrin vatche pes fritches.jpg
Gangrenous mastitis in a cow, Day 10; green arrow : complete necrosis of the teat; yellow arrows : limits of the gangrenous tissue, but the necrotic area is not well delimited on the upper part of the udder

Mastitis can cause a decline in potassium and lactoferrin. It also results in decreased casein, the major protein in milk. As most calcium in milk is associated with casein, the disruption of casein synthesis contributes to lowered calcium in milk. [3] The milk protein continues to undergo further deterioration during processing and storage. Milk from cows with mastitis also has a higher somatic cell count. Generally speaking, the higher the somatic cell count, the lower the milk quality.

Bovine respiratory disease

In early bovine respiratory disease (BRD) cases, the lungs and airways are generally painful, so the animal will try to clear the airway with mild, tentative, soft coughing. [4] Fever of over 40 °C (104 °F) is one of the earliest signs of BRD. [5]

Arthritis

Cattle effected by arthritis have difficulty in moving, including getting up and swelling in joints. Some outbreaks have many lame calves while others have no effected calves. Some calves have swollen joints that are so painful that they will be reluctant to walk to the feed and water bunks. In rare cases calves can have spinal issues, tiredness, irritability, muscle atrophy, licking, chewing and biting. [6]

Prevention

There are many ways by which cattle can be prevented from catching Mycoplasma bovis and other pathogenic bacteria. [7]

Transport of animals

Animal transport vehicles should be cleaned with disinfectants before and after use. Environmental swabs should be taken and samples sent to a microbiology lab. If any harmful bacteria are detected, further action should be taken. [8]

Visitors

Only authorized people should be allowed to visit a farm. Visitors should arrive with clean clothing and footwear. Disinfectant on arrival and departure can reduce the spread of bacteria. For example, a water mat with disinfectant can be used in the entrance of the farm.

Weekly inspection and maintenance

Weekly cleaning of all the areas and equipment reduces the chances of animals getting sick. Also, it is important to clean the feedlot container and keep the feed dry. Doubling the boundary fence with a 6-inch gap prevents the animals contacting neighbouring animals.

Diagnostics

Mycoplasma bovis can be analyzed with culture, PCR (polymerase chain reaction) or serology. It is difficult to culture because of slow growing and special agar is needed. Therefore, PCR is most commonly used and also serology. A collaboration between six different European laboratories (CoVetLab) showed that the different in-house PCR that were used worked well A European interlaboratory trial to evaluate the performance of different PCR methods for Mycoplasma bovis diagnosis

The CoVetLab project also evaluated three different serological methods and found that two of them were performing well A European inter-laboratory trial to evaluate the performance of three serological methods for diagnosis of Mycoplasma bovis infection in cattle using latent class analysis

History and taxonomy

Mycoplasma bovis was first isolated in the United States from the milk of a mastitic cow in 1961. [9] It was initially described as Mycoplasma agalactia var bovis by Hale and colleagues, on the basis of biochemical reactions and its association with bovine mastitis. Later work, based on serological responses and DNA homology studies confirmed that the new Mycoplasma was a different species and renamed it Mycoplasma bovis [10]

As of June 2017, only two OECD nations (New Zealand and Norway) were considered to be free of Mycoplasma bovis, but in July 2017 some cattle near Oamaru, New Zealand were found to be Mycoplasma bovis positive; see 2017 Mycoplasma bovis outbreak.

Loss to economy

There are only estimated economic losses in two continents due to Mycoplasma bovis. The estimated loss in Europe due to Mycoplasma bovis is approximately 576 million per year. [11] The total loss in the United States is estimated to be $108 million. US losses due to mastitis, lack of the weight gain and diminished carcass value are valued at $32 million. [12] It is very expensive for the government and the farmers to control Mycoplasma bovis. [13] Also, it affects the production of milk and the cost for treatment is high. Because cows are the main source of income to most of the farmers, many governments have to reimburse the farmers for loss of income and stock value, which affects the economy.

Treatment

Mycoplasma species have unusual characteristics for bacteria. Unlike other bacteria they can live in cultures outside cells and they lack a cell wall. Some antibiotics work by damaging cell walls so these do not work on Mycoplasma species. However, they can be killed by antibiotics such as tetracyclines, macrolides or erythromycin which do not act on the cell wall. Draxxin (Tulathromycin) and Resflor Gold are the only drugs approved for treating Mycoplasma bovis in cattle but Florfenicol (Nuflor) and Batril can also be used. The normal duration of the treatment is 10–14 days by antibiotic therapy. [14]

Vaccination

Several vaccines are available: Pulmo-GuardMpB, Mycomune Mycoplasma Bovis bacterin, and Myco-BacTM B. [15]

Related Research Articles

Brucellosis is a zoonosis caused by ingestion of unpasteurized milk from infected animals, or close contact with their secretions. It is also known as undulant fever, Malta fever, and Mediterranean fever.

Mycoplasma pneumoniae is a very small bacterium in the class Mollicutes. It is a human pathogen that causes the disease mycoplasma pneumonia, a form of atypical bacterial pneumonia related to cold agglutinin disease. M. pneumoniae is characterized by the absence of a peptidoglycan cell wall and resulting resistance to many antibacterial agents. The persistence of M. pneumoniae infections even after treatment is associated with its ability to mimic host cell surface composition.

<span class="mw-page-title-main">Colostrum</span> Form of milk produced immediately following the delivery of newborn

Colostrum, or first milk, is the first form of milk produced by the mammary glands of humans and other mammals immediately following delivery of the newborn. It may be called beestings when referring to the first milk of a cow or similar animal. Most species will begin to generate colostrum just prior to giving birth. Colostrum has an especially high amount of bioactive compounds compared to mature milk to give the newborn the best possible start to life. Specifically, colostrum contains antibodies to protect the newborn against disease and infection, and immune and growth factors and other bioactives that help to activate a newborn's immune system, jumpstart gut function, and seed a healthy gut microbiome in the first few days of life. The bioactives found in colostrum are essential for a newborn's health, growth and vitality. Colostrum strengthens a baby's immune system and is filled with white blood cells to protect it from infection.

<i>Mycobacterium bovis</i> Species of bacterium

Mycobacterium bovis is a slow-growing aerobic bacterium and the causative agent of tuberculosis in cattle. It is related to Mycobacterium tuberculosis, the bacterium which causes tuberculosis in humans. M. bovis can jump the species barrier and cause tuberculosis-like infection in humans and other mammals.

<span class="mw-page-title-main">Dairy cattle</span> Cattle bred to produce milk

Dairy cattle are cattle bred for the ability to produce large quantities of milk, from which dairy products are made. Dairy cattle generally are of the species Bos taurus.

Mycoplasma pneumonia is a form of bacterial pneumonia caused by the bacterial species Mycoplasma pneumoniae. It is also known as PPLO, which is an acronym for Pleuro Pneumonia Like Organism.

Bovine alphaherpesvirus 1 (BoHV-1) is a virus of the family Herpesviridae and the subfamily Alphaherpesvirinae, known to cause several diseases worldwide in cattle, including rhinotracheitis, vaginitis, balanoposthitis, abortion, conjunctivitis, and enteritis. BoHV-1 is also a contributing factor in shipping fever, also known as bovine respiratory disease (BRD). It is spread horizontally through sexual contact, artificial insemination, and aerosol transmission and it may also be transmitted vertically across the placenta. BoHV-1 can cause both clinical and subclinical infections, depending on the virulence of the strain. Although these symptoms are mainly non-life-threatening it is an economically important disease as infection may cause a drop in production and affect trade restrictions. Like other herpesviruses, BoHV-1 causes a lifelong latent infection and sporadic shedding of the virus. The sciatic nerve and trigeminal nerve are the sites of latency. A reactivated latent carrier is normally the source of infection in a herd. The clinical signs displayed are dependent on the virulence of the strain. There is a vaccine available which reduces the severity and incidence of disease. Some countries in Europe have successfully eradicated the disease by applying a strict culling policy.

<i>Neospora</i> Genus of single-celled organisms

Neospora is a single celled parasite of livestock and companion animals. It was not discovered until 1984 in Norway, where it was found in dogs. Neosporosis, the disease that affects cattle and companion animals, has a worldwide distribution. Neosporosis causes abortions in cattle and paralysis in companion animals. It is highly transmissible and some herds can have up to a 90% prevalence. Up to 33% of pregnancies can result in aborted fetuses on one dairy farm. In many countries this organism is the main cause of abortion in cattle. Neosporosis is now considered as a major cause of abortion in cattle worldwide. Many reliable diagnostic tests are commercially available. Neospora caninum does not appear to be infectious to humans. In dogs, Neospora caninum can cause neurological signs, especially in congenitally infected puppies, where it can form cysts in the central nervous system.

Infectious bovine keratoconjunctivitis (IBK), also known as pinkeye, New Forest eye or blight, is a veterinary infection of cattle caused by Moraxella bovis, a Gram-negative, β-haemolytic, aerobic, rod-shaped bacterium. It is spread by direct contact or by flies serving as vectors. It is the most common ocular disease of cattle. IBK is similar to human pink eye and causes severe infection of the conjunctiva, edema, corneal opacity, and ulceration. This disease is highly contagious and occurs worldwide. Younger animals are more susceptible, but recovery with minimal damage is usual, if they are treated early.

<span class="mw-page-title-main">Cefquinome</span> Chemical compound

Cefquinome is a fourth-generation cephalosporin with pharmacological and antibacterial properties valuable in the treatment of coliform mastitis and other infections. It is only used in veterinary applications.

<span class="mw-page-title-main">United States raw milk debate</span>

The United States raw milk debate concerns issues of food safety and claimed health benefits of raw milk, and whether authorities responsible for regulating food safety should prohibit sale of raw milk for consumption.

<span class="mw-page-title-main">Tulathromycin</span> Cattle and pig antibiotic

Tulathromycin, sold under the brand name Draxxin among others, is a macrolide antibiotic used to treat bovine respiratory disease in cattle and swine respiratory disease in pigs.

<span class="mw-page-title-main">Tylosin</span> Chemical compound

Tylosin is a macrolide antibiotic and bacteriostatic feed additive used in veterinary medicine. It has a broad spectrum of activity against Gram-positive organisms and a limited range of Gram-negative organisms. It is found naturally as a fermentation product of Streptomyces fradiae.

<i>Streptococcus canis</i> Species of bacterium

Streptococcus canis is a group G beta-hemolytic species of Streptococcus. It was first isolated in dogs, giving the bacterium its name. These bacteria are characteristically different from Streptococcus dysgalactiae, which is a human-specific group G species that has a different phenotypic chemical composition. S. canis is important to the skin and mucosal health of cats and dogs, but under certain circumstances, these bacteria can cause opportunistic infections. These infections were known to afflict dogs and cats prior to the formal description of the species in Devriese et al., 1986. However, additional studies revealed cases of infection in other mammal species, including cattle and even humans. Instances of mortality from S. canis in humans are very low with only a few reported cases, while actual instances of infection may be underreported due to mischaracterizations of the bacteria as S. dysgalactiae. This species, in general, is highly susceptible to antibiotics, and plans to develop a vaccine to prevent human infections are currently being considered.

<span class="mw-page-title-main">Dairy farming in New Zealand</span> Overview article

Dairy farming in New Zealand began during the early days of colonisation by Europeans. The New Zealand dairy industry is based almost exclusively on cattle, with a population of 4.92 million milking cows in the 2019-20 season. The income from dairy farming is now a major part of the New Zealand economy, becoming an NZ$13.4 billion industry by 2017.

<span class="mw-page-title-main">Mastitis in dairy cattle</span>

Bovine mastitis is the persistent, inflammatory reaction of the udder tissue due to physical trauma or microorganisms infections. Mastitis, a potentially fatal mammary gland infection, is the most common disease in dairy cattle in the United States and worldwide. It is also the most costly disease to the dairy industry. Milk from cows suffering from mastitis has an increased somatic cell count. Prevention and control of mastitis requires consistency in sanitizing the cow barn facilities, proper milking procedure and segregation of infected animals. Treatment of the disease is carried out by penicillin injection in combination with sulphar drug.

Anaplasma bovis is gram negative, obligate intracellular organism, which can be found in wild and domestic ruminants, and potentially a wide variety of other species. It is one of the last species of the Family Anaplasmaceae to be formally described. It preferentially infects host monocytes, and is often diagnosed via blood smears, PCR, and ELISA. A. bovis is not currently considered zoonotic, and does not frequently cause serious clinical disease in its host. This organism is transmitted by tick vectors, so tick bite prevention is the mainstay of A. bovis control, although clinical infections can be treated with tetracyclines. This organism has a global distribution, with infections noted in many areas, including Korea, Japan, Europe, Brazil, Africa, and North America.

Bovine respiratory disease (BRD) is the most common and costly disease affecting beef cattle in the world. It is a complex, bacterial or viral infection that causes pneumonia in calves which can be fatal. The infection is usually a sum of three codependent factors: stress, an underlying viral infection, and a new bacterial infection. The diagnosis of the disease is complex since there are multiple possible causes.

Mycoplasma agalactiae is a species of bacteria in the genus Mycoplasma. This genus of bacteria lacks a cell wall around their cell membrane. Without a cell wall, they are unaffected by many common antibiotics such as penicillin or other beta-lactam antibiotics that target cell wall synthesis. Mycoplasma are the smallest bacterial cells yet discovered, can survive without oxygen and are typically about 0.1–0.3 µm in diameter.

Histophilus somni is a non-motile, gram-negative, rod or coccobacillus shaped, facultative anaerobe bacterial species belonging to the family Pasteurellaceae. Prior to 2003, it was thought Haemophilus somnus, Histophilus ovis, and Histophilus agni were three different species, but now are all classified as Histophilus somni. Histophilus somni is a commensal bacteria of mucous membranes of the upper respiratory tract and reproductive tract with a global prevalence and is found in cattle and other small ruminants. Histophilus somni is also a known causative agent that is a part of the Bovine Respiratory Disease (BRD) complex, which typically involves multiple pathogens residing together in biofilm environments. Histophilus somni may also cause Histophilosus symptoms and clinical presentation will depend on the tissue affected. When disease does occur, it can be difficult to catch in time and is often diagnosed on post mortem. This means that treatment often involves metaphylactic mass treatment or no treatment at all. This organism is more fastidious than others and requires knowledge for sample collection, storage and culture. Genomic studies related to this bacteria have enabled scientist to pin point antibiotic resistance genes.  

References

  1. "Bacterial disease mycoplasma bovis found in New Zealand cows for the first time". NZ Herald. 25 July 2017. Retrieved 17 June 2018.
  2. "Mycoplasma bovis - fact sheet". Ministry for Primary Industries. Retrieved 17 June 2018.
  3. Jones, G.M.; Bailey, T.L. Jr (1 May 2009). "Understanding the Basics of Mastitis". Virginia Cooperative Extension. Archived from the original on 2 November 2019. Retrieved 17 June 2018.
  4. "Bovine Respiratory Disease (BRD)". Zoetis US.
  5. Jelinski, Murray; Janzen, Eugene. "Bovine Respiratory Disease - Beef Cattle Research Council". Beef Cattle Research Council.
  6. Maunsell, F.P.; Woolums, A.R.; Francoz, D.; Rosenbusch, R.F.; Step, D.L.; Wilson, D.J.; Janzen, E.D. (July 2011). "Mycoplasma bovis infections in cattle". Journal of Veterinary Internal Medicine. 25 (4): 772–783. doi:10.1111/j.1939-1676.2011.0750.x. PMID   21745245.
  7. "Abortion in cattle". Partners in Reproduction. MSD Animal Health.
  8. "What you need to know about the Mycoplasma bovis infection". Dairy NZ.
  9. Hale, HH; Hemboldt, CF; Plastridge, WN; Stula, EF. (1962). "Bovine mastitis caused by a Mycoplasma species". Cornell Veterinarian. 52: 589–91. PMID   13952069.
  10. Askaa, G; Erno, H (1976). "NOTE: Elevation of Mycoplasma agalactiae subsp. bovis to Species Rank: Mycoplasma bovis (Hale et al.) comb. nov". International Journal of Systematic Bacteriology. 26 (3): 323–325. doi: 10.1099/00207713-26-3-323 .
  11. Pfützner, H; Sachse, K (1996). "Mycoplasma bovis as an agent of mastitis, pneumonia, arthritis and genital disorders in cattle" (PDF). Scientific and Technical Review. World Organisation for Animal Health. 15 (4): 1477–1494.
  12. Edward, D.G.; Freundt, E.A. (1 February 1956). "The Classification and Nomenclature of Organisms of the Pleuropneumonia Group". Journal of General Microbiology. 14 (1): 197–207. doi: 10.1099/00221287-14-1-197 . PMID   13306904. Open Access logo PLoS transparent.svg
  13. Smith, Mitch (12 March 2022). "He Spent Decades Protecting Buffalo. A Microscopic Invader Threatens That Work". The New York Times. ISSN   0362-4331 . Retrieved 12 March 2022.
  14. Anderson, David E.; Rings, Michael, eds. (2008). "Vaccines". Current Veterinary Therapy: Food Animal Practice (5th ed.). St Louis, Missouri: Saunders. pp. 192–193. ISBN   9781416035916.
  15. Dyer, N.W. "Recommendations on control of Mycoplasma bovis infection in beef feedlots" (PDF). NDSU Agriculture and Extension. Retrieved 17 June 2018.

Further reading