Myogenic mechanism

Last updated

The myogenic mechanism is how arteries and arterioles react to an increase or decrease of blood pressure to keep the blood flow constant within the blood vessel. Myogenic response refers to a contraction initiated by the myocyte itself instead of an outside occurrence or stimulus such as nerve innervation. Most often observed in (although not necessarily restricted to) smaller resistance arteries, this 'basal' tone may be useful in the regulation of organ blood flow and peripheral resistance, as it positions a vessel in a preconstricted state that allows other factors to induce additional constriction or dilation to increase or decrease blood flow.

Contents

The smooth muscle of the blood vessels reacts to the stretching of the muscle by opening ion channels, which cause the muscle to depolarize, leading to muscle contraction. This significantly reduces the volume of blood able to pass through the lumen, which reduces blood flow through the blood vessel. Alternatively when the smooth muscle in the blood vessel relaxes, the ion channels close, resulting in vasodilation of the blood vessel; this increases the rate of flow through the lumen.

This system is especially significant in the kidneys, where the glomerular filtration rate (the rate of blood filtration by the nephron) is particularly sensitive to changes in blood pressure. However, with the aid of the myogenic mechanism, the glomerular filtration rate remains very insensitive to changes in human blood pressure.

Myogenic mechanisms in the kidney are part of the autoregulation mechanism which maintains a constant renal blood flow at varying arterial pressure. Concomitant autoregulation of glomerular pressure and filtration indicates regulation of preglomerular resistance. Model and experimental studies were performed to evaluate two mechanisms in the kidney, myogenic response and tubuloglomerular feedback. A mathematical model showed good autoregulation through a myogenic response, aimed at maintaining a constant wall tension in each segment of the preglomerular vessels. Tubuloglomerular feedback gave rather poor autoregulation. The myogenic mechanism showed 'descending' resistance changes, starting in the larger arteries, and successively affecting downstream preglomerular vessels at increasing arterial pressures. This finding was supported by micropuncture measurements of pressure in the terminal interlobular arteries. Evidence that the mechanism was myogenic was obtained by exposing the kidney to a subatmospheric pressure of 40 mmHg; this led to an immediate increase in renal resistance, which could not be prevented by denervation or various blocking agents. [1]

Bayliss effect

The importance of the Bayliss effect in maintaining a constant capillary flow independently of variations in arterial blood pressure Bayliss effect.png
The importance of the Bayliss effect in maintaining a constant capillary flow independently of variations in arterial blood pressure

Bayliss effect or Bayliss myogenic response is a special manifestation of the myogenic tone in the vasculature. [2] [3] The Bayliss effect in vascular smooth muscles cells is a response to stretch. This is especially relevant in arterioles of the body. When blood pressure is increased in the blood vessels and the blood vessels distend, they react with a constriction; this is the Bayliss effect. Stretch of the muscle membrane opens a stretch-activated ion channel. The cells then become depolarized and this results in a Ca2+ signal and triggers muscle contraction. It is important to understand that no action potential is necessary here; the level of entered calcium affects the level of contraction proportionally and causes tonic contraction. The contracted state of the smooth muscle depends on the grade of stretch and plays an important part in the regulation of blood flow. [ citation needed ]

Increased contraction increases the total peripheral resistance (TPR) and this further increases the mean arterial pressure (MAP). This is explained by the following equation: , where CO is the cardiac output, which is the volume of blood pumped by the heart in one minute.

This effect is independent of nervous mechanisms, which is controlled by the sympathetic nervous system.

The overall effect of the myogenic response (Bayliss effect) is to decrease blood flow across a vessel after an increase in blood pressure.

History

The Bayliss effect was discovered by physiologist Sir William Bayliss in 1902. [4]

Proposed mechanism

When the endothelial cell in the tunica intima of an artery is stretched it is likely that the endothelial cell may signal constriction to the muscle cell layer in a paracrine fashion. Increase in blood pressure may cause depolarisation of the affected myocytes as well or endothelial cells alone. The mechanism is not yet completely understood, but studies have shown that volume regulated chloride channels and stretch sensitive non-selective cation channels lead to an increased probability in opening of L-type (voltage-dependent) Ca2+ channels, thus raising the cytosolic concentration of Ca2+ leading to a contraction of the myocyte, and this may involve other channels in the endothelia.[ citation needed ]

Unstable Membrane Potentials

Many cells have resting membrane potentials that are unstable. It is usually due to ion channels in the cell membrane that spontaneously open and close (e.g. If channels in cardiac pacemaker cells). When the membrane potential reaches depolarization threshold an action potential (AP) is fired, excitation-contraction coupling initiates and the myocyte contracts.[ citation needed ]

Slow wave potentials

Slow wave potential are unstable resting membrane potentials that continuously cycle through depolarization- and repolarization phases. However, not every cycle reaches depolarization threshold and thus an action potential (AP) will not always fire. Owing to temporal summation (depolarization potentials spaced closely together in time so that they summate), however, cell membrane depolarization will periodically reach depolarization threshold and an action potential will fire, triggering contraction of the myocyte.[ citation needed ]

Pacemaker potentials

Pacemaker potentials are unstable cell membrane potentials that reach depolarization threshold with every depolarization/repolarization cycle. This results in AP's being fired according to a set rhythm. Cardiac pacemaker cells, a type of cardiac myocyte in the SA node of heart, are an example of cells with a pacemaker potential.[ citation needed ]

Stretch

This mechanism involves the opening of mechanically-gated Ca2+ channels when some myocytes are stretched. The resulting influx of Ca2+ ions lead to the initiation of excitation-contraction coupling and thus contraction of the myocyte.[ citation needed ]

See also

Related Research Articles

Heart Muscular organ responsible for pumping blood through the circulatory system in most animals

The heart is a muscular organ in most animals, which pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to the lungs. In humans, the heart is approximately the size of a closed fist and is located between the lungs, in the middle compartment of the chest.

Capillary Smallest type of blood vessel

A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter, and having a wall one endothelial cell thick. They are the smallest blood vessels in the body: they convey blood between the arterioles and venules. These microvessels are the site of exchange of many substances with the interstitial fluid surrounding them. Substances which exit include water, oxygen, and glucose; substances which enter include water, carbon dioxide, uric acid, lactic acid, urea and creatinine. Lymph capillaries connect with larger lymph vessels to drain lymphatic fluid collected in the microcirculation.

Cardiac pacemaker Network of cells that facilitate rhythmic heart contraction

The contraction of cardiac muscle in all animals is initiated by electrical impulses known as action potentials. The rate at which these impulses fire, controls the rate of cardiac contraction, that is, the heart rate. The cells that create these rhythmic impulses, setting the pace for blood pumping, are called pacemaker cells, and they directly control the heart rate. They make up the cardiac pacemaker, that is, the natural pacemaker of the heart. In most humans, the concentration of pacemaker cells in the sinoatrial (SA) node is the natural pacemaker, and the resultant rhythm is a sinus rhythm.

Systole

The systole is the part of the cardiac cycle during which some chambers of the heart muscle contract after refilling with blood. The term originates, via New Latin, from Ancient Greek συστολή (sustolē), from συστέλλειν, and is similar to the use of the English term "to squeeze".

Smooth muscle Involuntary non-striated muscle

Smooth muscle is an involuntary non-striated muscle. It is divided into two subgroups; the single-unit (unitary) and multiunit smooth muscle. Within single-unit cells, the whole bundle or sheet contracts as a syncytium.

Vasoconstriction Narrowing of blood vessels due to the constriction of smooth muscle cells

Vasoconstriction is the narrowing of the blood vessels resulting from contraction of the muscular wall of the vessels, in particular the large arteries and small arterioles. The process is the opposite of vasodilation, the widening of blood vessels. The process is particularly important in controlling hemorrhage and reducing acute blood loss. When blood vessels constrict, the flow of blood is restricted or decreased, thus retaining body heat or increasing vascular resistance. This makes the skin turn paler because less blood reaches the surface, reducing the radiation of heat. On a larger level, vasoconstriction is one mechanism by which the body regulates and maintains mean arterial pressure.

Cardiac muscle Muscular tissue of heart

Cardiac muscle is one of three types of vertebrate muscles, with the other two being skeletal and smooth muscles. It is involuntary, striated muscle that constitutes the main tissue of the walls of the heart. The myocardium forms a thick middle layer between the outer layer of the heart wall and the inner layer, with blood supplied via the coronary circulation. It is composed of individual heart muscle cells (cardiomyocytes) joined together by intercalated discs, encased by collagen fibers and other substances that form the extracellular matrix.

Depolarization change in a cells electric charge distribution

In biology, depolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell. Depolarization is essential to the function of many cells, communication between cells, and the overall physiology of an organism.

Sinoatrial node Group of cells located in the wall of the right atrium of the heart

The sinoatrial node is a group of cells located in the wall of the right atrium of the heart. These cells have the ability to spontaneously produce an electrical impulse, that travels through the heart via the electrical conduction system causing it to contract. In a healthy heart, the SA node continuously produces action potential, setting the rhythm of the heart and so is known as the heart's natural pacemaker. The rate of action potential production is influenced by nerves that supply it.

Striated muscle tissue Muscle tissue with repeating functional units called sarcomeres

Striated muscle tissue is a muscle tissue that features repeating functional units called sarcomeres. The presence of sarcomeres manifests as a series of bands visible along the muscle fibers, which is responsible for the striated appearance observed in microscopic images of this tissue. There are two types of striated muscles:

Electrical conduction system of the heart Transmits signals generated usually by the sinoatrial node to cause contraction of the heart muscle

The electrical conduction system of the heart transmits signals generated usually by the sinoatrial node to cause contraction of the heart muscle. The pacemaking signal generated in the sinoatrial node travels through the right atrium to the atrioventricular node, along the Bundle of His and through bundle branches to cause contraction of the heart muscle. This signal stimulates contraction first of the right and left atrium, and then the right and left ventricles. This process allows blood to be pumped throughout the body.

Mesangial cells are specialised cells in the kidney that make up the mesangium of the glomerulus. Together with the mesangial matrix, they form the vascular pole of the renal corpuscle. The mesangial cell population accounts for approximately 30-40% of the total cells in the glomerulus. Mesangial cells can be categorized as either extraglomerular mesangial cells or intraglomerular mesangial cells, based on their relative location to the glomerulus. The extraglomerular mesangial cells are found between the afferent and efferent arterioles towards the vascular pole of the glomerulus. The extraglomerular mesangial cells are adjacent to the intraglomerular mesangial cells that are located inside the glomerulus and in between the capillaries. The primary function of mesangial cells is to remove trapped residues and aggregated protein from the basement membrane thus keeping the filter free of debris. The contractile properties of mesangial cells have been shown to be insignificant in changing the filtration pressure of the glomerulus.

The cardiac action potential is a brief change in voltage across the cell membrane of heart cells. This is caused by the movement of charged atoms between the inside and outside of the cell, through proteins called ion channels. The cardiac action potential differs from action potentials found in other types of electrically excitable cells, such as nerves. Action potentials also vary within the heart; this is due to the presence of different ion channels in different cells.

Muscle contraction Activation of tension-generating sites in muscle

Muscle contraction is the activation of tension-generating sites within muscle fibers. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding a heavy book or a dumbbell at the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

T wave

In electrocardiography, the T wave represents the repolarization of the ventricles. The interval from the beginning of the QRS complex to the apex of the T wave is referred to as the absolute refractory period. The last half of the T wave is referred to as the relative refractory period or vulnerable period. The T wave contains more information than the QT interval. The T wave can be described by its symmetry, skewness, slope of ascending and descending limbs, amplitude and subintervals like the Tpeak–Tend interval.

Myometrium

The myometrium is the middle layer of the uterine wall, consisting mainly of uterine smooth muscle cells but also of supporting stromal and vascular tissue. Its main function is to induce uterine contractions.

Cardioplegia is intentional and temporary cessation of cardiac activity, primarily for cardiac surgery.

Cardiac muscle cell Muscle cells (myocytes) that make up the cardiac muscle

Cardiac muscle cells or cardiomyocytes are the muscle cells (myocytes) that make up the cardiac muscle. Each myocardial cell contains myofibrils, which are specialized organelles consisting of long chains of sarcomeres, the fundamental contractile units of muscle cells.

Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.

N-(p-Amylcinnamoyl)anthranilic acid (ACA) is a modulator of various ion channels in the heart. ACA is an effective reversible inhibitor of calcium-activated chloride channels and, to a lesser extent, cAMP-activated chloride channels, without affecting L-type calcium channels. Calcium-activated chloride channels are believed to be involved in developing arrhythmia.

References

  1. Aukland, K (1989). "Myogenic mechanisms in the kidney". Journal of Hypertension Supplement. 7 (4): S71–6, discussion S77. PMID   2681599.
  2. J. R. Levick. An introduction to cardiac physiology. ISBN   0-340-76376-0.[ page needed ]
  3. A. Fonyo. Principals of medical physiology. ISBN   963-242-726-2.[ page needed ]
  4. Bayliss, W. M. (28 May 1902). "On the local reactions of the arterial wall to changes of internal pressure". The Journal of Physiology. 28 (3): 220–231. doi:10.1113/jphysiol.1902.sp000911. PMC   1540533 . PMID   16992618.