Myrmekite

Last updated
Myrmekite, about 2 millimetres across Myrmekite.JPG
Myrmekite, about 2 millimetres across

Myrmekite is a vermicular, or wormy, intergrowth of quartz in plagioclase. The intergrowths are microscopic in scale, typically with maximum dimensions less than 1 millimeter. The plagioclase is sodium-rich, usually albite or oligoclase. These quartz-plagioclase intergrowths are associated with and commonly in contact with potassium feldspar. Myrmekite is formed under metasomatic conditions, usually in conjunction with tectonic deformations. It has to be clearly separated from micrographic and granophyric intergrowths, which are magmatic.

Contents

Etymology

The word myrmekite is derived from the Ancient Greek μὑρμηχἰα (wart) or μὑρμηξ (ant) and was used by Jakob Sederholm in 1899 for the first time to describe these structures.

Myrmekite formed during K-metasomatism

Rim myrmekite on zoned plagioclase against interstitial microcline (gray and black) Rim myrmekite.gif
Rim myrmekite on zoned plagioclase against interstitial microcline (gray and black)
Wartlike myrmekite in megacrystal quartz monzonite from Twentynine Palms, California Wartlike myrmekite.gif
Wartlike myrmekite in megacrystal quartz monzonite from Twentynine Palms, California
Ghost myrmekite in Mount Rubidoux leucogranite Ghost myrmekite.gif
Ghost myrmekite in Mount Rubidoux leucogranite

During K-metasomatism of plagioclase several different types of myrmekite can appear:

Rim myrmekite

This is the initial stage of K-metasomatism in cataclastically-deformed magmatic plutonic rocks. The breakage happens primarily along grain boundary seals and the K-metasomatism may locally replace rims of zoned plagioclase crystals to form interstitial alkali feldspar and rim myrmekite (see illustration).

Wartlike myrmekite

When tectonic strains increase and the cataclasis becomes more intense interior breakage in the crystals ensues and albite-twinned plagioclase crystals are bent. The K-metasomatism therefore can reach deeper into the crystals and increase its effects. Nearly complete to complete replacement of plagioclase takes place and leads to the formation of wartlike myrmekite in places where the replacement was incomplete. The illustration shows tartan-twinned microcline having completely replaced plagioclase. The places with incomplete replacement are taken up by wartlike myrmekite.

Gradations occur from rocks containing exclusively rim myrmekite to those containing both rim myrmekite and wartlike myrmekite and finally to those containing exclusively wartlike myrmekite.

A very important observation is that the maximum coarseness (tubular diameter) of the quartz vermicules shows a strong correlation with the Ca content of the plagioclase in the original, unreplaced, non-myrmekite-bearing magmatic rock. The coarsest vermicules occur in the metasomatized rock where the original plagioclase was the most calcic.

An example for the formation of wartlike myrmekite can be found at the Twentynine Palms, California quartz monzonite which issued from an older, yet undated diorite.

Ghost myrmekite

This is the third type of quartz-feldspar intergrowth in metasomatic granitoids. Again this process depends on tectonically deformed crystals. In this particular case an irregular subtraction of Ca, Na and Al from deformed plagioclase happens which causes an imbalance in the relative amounts of residual Al and Si. More Si remains than can fit into the lattice structure of the alkali feldspar that replaces the plagioclase. The result is ghost myrmekite – either as tiny quartz ovoids in remnant albite islands in the alkali feldspar or as tiny quartz ovoids as clusters without albite hosts in the alkali feldspar (see illustration).

Examples for this structure are found in California in the Mount Rubidoux leucogranite and in granodiorites in the Sierra Nevada.

Myrmekite formed during Ca-metasomatism

During Ca- metasomatism myrmekite can be formed under different circumstances:

Ca-metasomatism of deformed K-feldspar in magmatic rocks

Fractured alkali feldspar filled with central quartz and myrmekite during Ca-metasomatism Ca-myrmekite.gif
Fractured alkali feldspar filled with central quartz and myrmekite during Ca-metasomatism

Here Ca-bearing fluids enter primary alkali feldspar through cracks and react with the alkali feldspar. Through this reaction cracks are filled with quartz and myrmekite. The replacement reactions can affect large portions (> 60%) of the primary alkali feldspar. An important distinctive feature of this type of myrmekite formation is the constant thickness of the vermicules, whereas in the K-metasomatism their thickness changes as a function of the Ca-content of the plagioclase and they also taper towards the alkali feldspar.

An example for this type of Ca-metasomatism is found in a megacrystal granite near Alastaro in Finland.

Ca-metasomatism of deformed K-feldspar in charnockites

The process stays the same, the only difference being the country rocks the Ca-bearing fluids act upon. Charnockites distinguish themselves from ordinary granitoids by the appearance of orthopyroxene (hypersthene) and can also be of metamorphic origin.

An example for this type of Ca-metasomatism is found in Sri Lanka. [1]

Ca-metasomatism of deformed plagioclase in anorthosites

In this type of Ca-metasomatism instead of the alkali feldspar it is the ubiquitous plagioclase that gets attacked by the Ca-bearing fluids. The resulting myrmekite also shows vermicules with constant thickness but unlike in the first case the vermicules formed in anorthosites can taper locally to the primary, non-quartz-bearing plagioclase. This behaviour can be explained by the incorporation of Na demanding more silica in the feldspar lattice.

Examples are found in layered igneous complexes. [2]

Myrmekite formed during Na-Ca-metasomatism

Myrmekite replacing K-feldspar in perthite during Na-Ca-metasomatism, showing isolated quartz vermicules of irregular shape. Lyon Mountain granite gneiss, Ausable Forks, New York Myrmekite LyonMtn.gif
Myrmekite replacing K-feldspar in perthite during Na-Ca-metasomatism, showing isolated quartz vermicules of irregular shape. Lyon Mountain granite gneiss, Ausable Forks, New York

A first variety of this type of metasomatism affects only enclaves within a granitoid. Here the influx of Na-rich fluids in the temperature range 450 °C to 650 °C from the host leads to the replacement of alkali feldspar by myrmekite within the enclaves. During this process a reequilibration with the Na-poorer feldspars (plagioclase) in the enclaves takes place. As a consequence Ca gets released in plagioclase which in turn can now react upon K-feldspar to form myrmekite. Basically this process is very similar to the Ca-metasomatism on K-feldspar described above except for the Na-fluids acting as a trigger.

An example is the Velay granite in the northeastern Massif Central in France. [3]

In the second variety Na- and Ca-bearing fluids truly act together. This leads via the replacement of primary K-feldspar (perthitic and non-perthitic microcline) to the formation of plagioclase (albite or oligoclase) and in certain places also to the formation of myrmekite. The myrmekite does not show wartlike tapering vermicules, but vermicules that are nearly constant in size because the host plagioclase containing the quartz vermicules has nearly a constant Na/Ca composition. These vermicules are confined and scattered entirely within the interior of the plagioclase forming irregular spindles, arcuate patterns and ovals.

For this process to operate it is important that Ca is sufficiently present so that a fairly calcic plagioclase can be formed which in turn releases enough silica for the myrmekite vermicules. If only Na is present then no myrmekite will form.

An example can be found in the Lyon Mountain granite gneiss north of Ausable Forks in New York.

Myrmekite formed during progressive deformation

During progressive deformation in mylonitic, ductile shear zones myrmekite is commonly concentrated in shortening quarters in the rim of sigmoidal K-feldspar crystals. [4] Simpson and Wintsch (1989) explain the asymmetric distribution of myrmekite by a preferential proceeding of the K-feldspar breakdown reaction at sites of high differential stress (stress-concentration sites) during retrograde metamorphism. [5] Internally the arrangement of the quartz vermicules in the myrmekites also shows a monoclinic symmetry, which independently can serve as an internal shear sense indicator. Asymmetric myrmekite is therefore a quarter structure.

Yet Lorence G. Collins does not agree with the assumption of the K-feldspar being primary magmatic and the myrmekite being formed due to deformation-induced Na-Ca-metasomatism. His sampling beyond the shear zone revealed an undeformed, felsic biotite diorite whose primary plagioclase was being replaced from the inside out by K-feldspar due to K-metasomatism. The deformations were therefore more or less continuous and had not only affected the shear zone but also the older plutonic country rocks, thence bringing about a metasomatic change in mineralogy.

Occurrence

Myrmekite can appear in many different rock types and different geologic settings. Typically it occurs in granites and similar igneous rocks (granitoids, diorites, gabbros) and in metamorphic gneisses similar to granite in composition. It can also occur in mylonites, in anorthosites and the orthopyroxene-bearing charnockites.

Formation

These characteristic intergrowths have been explained in a variety of ways:

See also

Related Research Articles

<span class="mw-page-title-main">Granite</span> Type of igneous rock

Granite is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

<span class="mw-page-title-main">Gabbro</span> Coarse-grained mafic intrusive rock

Gabbro is a phaneritic (coarse-grained), mafic intrusive igneous rock formed from the slow cooling of magnesium-rich and iron-rich magma into a holocrystalline mass deep beneath the Earth's surface. Slow-cooling, coarse-grained gabbro is chemically equivalent to rapid-cooling, fine-grained basalt. Much of the Earth's oceanic crust is made of gabbro, formed at mid-ocean ridges. Gabbro is also found as plutons associated with continental volcanism. Due to its variant nature, the term gabbro may be applied loosely to a wide range of intrusive rocks, many of which are merely "gabbroic". By rough analogy, gabbro is to basalt as granite is to rhyolite.

<span class="mw-page-title-main">Feldspar</span> Group of rock-forming minerals

Feldspar is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the plagioclase (sodium-calcium) feldspars and the alkali (potassium-sodium) feldspars. Feldspars make up about 60% of the Earth's crust, and 41% of the Earth's continental crust by weight.

<span class="mw-page-title-main">Pegmatite</span> Igneous rock with very large interlocked crystals

A pegmatite is an igneous rock showing a very coarse texture, with large interlocking crystals usually greater in size than 1 cm (0.4 in) and sometimes greater than 1 meter (3 ft). Most pegmatites are composed of quartz, feldspar, and mica, having a similar silicic composition to granite. However, rarer intermediate composition and mafic pegmatites are known.

<span class="mw-page-title-main">Syenite</span> Intrusive igneous rock

Syenite is a coarse-grained intrusive igneous rock with a general composition similar to that of granite, but deficient in quartz, which, if present at all, occurs in relatively small concentrations. It is considered a granitoid. Some syenites contain larger proportions of mafic components and smaller amounts of felsic material than most granites; those are classed as being of intermediate composition.

<span class="mw-page-title-main">Plagioclase</span> Type of feldspar

Plagioclase is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or "record-groove" effect.

<span class="mw-page-title-main">Amphibolite</span> A metamorphic rock containing mainly amphibole and plagioclase

Amphibolite is a metamorphic rock that contains amphibole, especially hornblende and actinolite, as well as plagioclase feldspar, but with little or no quartz. It is typically dark-colored and dense, with a weakly foliated or schistose (flaky) structure. The small flakes of black and white in the rock often give it a salt-and-pepper appearance.

<span class="mw-page-title-main">Anorthosite</span> Mafic intrusive igneous rock composed predominantly of plagioclase

Anorthosite is a phaneritic, intrusive igneous rock characterized by its composition: mostly plagioclase feldspar (90–100%), with a minimal mafic component (0–10%). Pyroxene, ilmenite, magnetite, and olivine are the mafic minerals most commonly present.

<span class="mw-page-title-main">Granitoid</span> Category of coarse-grained igneous rocks

A granitoid is a generic term for a diverse category of coarse-grained igneous rocks that consist predominantly of quartz, plagioclase, and alkali feldspar. Granitoids range from plagioclase-rich tonalites to alkali-rich syenites and from quartz-poor monzonites to quartz-rich quartzolites. As only two of the three defining mineral groups need to be present for the rock to be called a granitoid, foid-bearing rocks, which predominantly contain feldspars but no quartz, are also granitoids. The terms granite and granitic rock are often used interchangeably for granitoids; however, granite is just one particular type of granitoid.

<span class="mw-page-title-main">Metasomatism</span> Chemical alteration of a rock by hydrothermal and other fluids

Metasomatism is the chemical alteration of a rock by hydrothermal and other fluids. It is the replacement of one rock by another of different mineralogical and chemical composition. The minerals which compose the rocks are dissolved and new mineral formations are deposited in their place. Dissolution and deposition occur simultaneously and the rock remains solid.

<span class="mw-page-title-main">Hornfels</span>

Hornfels is the group name for a set of contact metamorphic rocks that have been baked and hardened by the heat of intrusive igneous masses and have been rendered massive, hard, splintery, and in some cases exceedingly tough and durable. These properties are caused by fine grained non-aligned crystals with platy or prismatic habits, characteristic of metamorphism at high temperature but without accompanying deformation. The term is derived from the German word Hornfels, meaning "hornstone", because of its exceptional toughness and texture both reminiscent of animal horns. These rocks were referred to by miners in northern England as whetstones.

<span class="mw-page-title-main">Charnockite</span> Type of granite containing orthopyroxene

Charnockite is any orthopyroxene-bearing quartz-feldspar rock formed at high temperature and pressure, commonly found in granulite facies’ metamorphic regions, sensu stricto as an endmember of the charnockite series.

<span class="mw-page-title-main">Litchfieldite</span>

Litchfieldite is a rare igneous rock. It is a coarse-grained, foliated variety of nepheline syenite, sometimes called nepheline syenite gneiss or gneissic nepeheline syenite. Litchfieldite is composed of two varieties of feldspar, with nepheline, sodalite, cancrinite and calcite. The mafic minerals, when present, are magnetite and an iron-rich variety of biotite (lepidomelane).

<span class="mw-page-title-main">Texture (geology)</span>

In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline, fragmental, aphanitic, and glassy. The geometric aspects and relations amongst the component particles or crystals are referred to as the crystallographic texture or preferred orientation. Textures can be quantified in many ways. The most common parameter is the crystal size distribution. This creates the physical appearance or character of a rock, such as grain size, shape, arrangement, and other properties, at both the visible and microscopic scale.

In petrology, micrographic texture is a fine-grained intergrowth of quartz and alkali feldspar, interpreted as the last product of crystallization in some igneous rocks which contain high or moderately high percentages of silica. Micropegmatite is an outmoded terminology for micrographic texture.

<span class="mw-page-title-main">Cathedral Peak Granodiorite</span> Suite of intrusive rock in the Sierra Nevada

The Cathedral Peak Granodiorite (CPG) was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. It has been assigned radiometric ages between 88 and 87 million years and therefore reached its cooling stage in the Coniacian.

The Piégut-Pluviers Granodiorite is situated at the northwestern edge of the Variscan Massif Central in France. Its cooling age has been determined as 325 ± 14 million years BP.

The Thiviers-Payzac Unit is a metasedimentary succession of late Neoproterozoic and Cambrian age outcropping in the southern Limousin in France. The unit geologically forms part of the Variscan basement of the northwestern Massif Central.

<span class="mw-page-title-main">Southern Oklahoma Aulacogen</span> Failed rift in the western and southern US of the triple junction that became the Iapetus Ocean

The Southern Oklahoma Aulacogen is a failed rift, or failed rift arm (aulacogen), of the triple junction that became the Iapetus Ocean spreading ridges. It is a significant geological feature in the Western and Southern United States. It formed sometime in the early to mid Cambrian Period and spans the Wichita Mountains, Taovayan Valley, Anadarko Basin, and Hardeman Basin in Southwestern Oklahoma. The Southern Oklahoma Aulacogen is primarily composed of basaltic dikes, gabbros, and units of granitic rock.

References

  1. Perchuk, L. L., Gerya, T. V., and Korsman, K., 1994, A model for charnockitization of gneissic complexes: Petrology, v. 2, p. 395-423.
  2. Iskandar Taib, L. R., and Brown, G. M., 1967, Layered Igneous Rocks. San Francisco, Freeman and Company, 588 p. ISBN   978-0-05-001763-0
  3. Garcia, D., Pascal, M-L., and Roux, J., 1996, Hydrothermal replacement of feldspars in igneous enclaves of the Velay granite and the genesis of myrmekite: European Journal of Mineralogy, v. 8, p. 703-711.
  4. Simpson, C. and Wintsch, R. P., 1989, Evidence for deformation-induced K-feldspar replacement by myrmekite: J. Metam. Geol., v. 7, p. 261-275.
  5. Shelley, D., 1993, Igneous and metamorphic rocks under the microscope: Chapman and Hall, London.
  6. Castle, R. O., and Lindsley, D. H., 1993, An exsolution silica-pump model for the origin of myrmekite. Contributions to Mineralogy and Petrology, v. 115, pages 58-65.
  7. Collins, L.G. (1996). Replacement of primary plagioclase by secondary K-feldspar and myrmekite Archived 2009-07-05 at the Wayback Machine