Nano-threads

Last updated

In computer science nano-threads are highly optimized lightweight threads designed for use on shared memory multiprocessors (such as SMPs). [1] [2] The Nano-threads specification was written in 1997. [1] [3]

Related Research Articles

Spaghetti code is a pejorative phrase for unstructured and difficult-to-maintain source code. Spaghetti code can be caused by several factors, such as volatile project requirements, lack of programming style rules, and software engineers with insufficient ability or experience.

In information science, an ontology encompasses a representation, formal naming, and definitions of the categories, properties, and relations between the concepts, data, or entities that pertain to one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of terms and relational expressions that represent the entities in that subject area. The field which studies ontologies so conceived is sometimes referred to as applied ontology.

In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits.

A specification language is a formal language in computer science used during systems analysis, requirements analysis, and systems design to describe a system at a much higher level than a programming language, which is used to produce the executable code for a system.

Oz is a multiparadigm programming language, developed in the Programming Systems Lab at Université catholique de Louvain, for programming language education. It has a canonical textbook: Concepts, Techniques, and Models of Computer Programming.

<span class="mw-page-title-main">Model checking</span> Computer science field

In computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification. This is typically associated with hardware or software systems, where the specification contains liveness requirements as well as safety requirements.

<span class="mw-page-title-main">OpenMP</span> Open standard for parallelizing

OpenMP is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.

<span class="mw-page-title-main">Concurrency (computer science)</span> Ability to execute a task in a non-serial manner

In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.

Refinement is a generic term of computer science that encompasses various approaches for producing correct computer programs and simplifying existing programs to enable their formal verification.

Architecture description languages (ADLs) are used in several disciplines: system engineering, software engineering, and enterprise modelling and engineering.

Unifying Theories of Programming (UTP) in computer science deals with program semantics. It shows how denotational semantics, operational semantics and algebraic semantics can be combined in a unified framework for the formal specification, design and implementation of programs and computer systems.

Thread Level Speculation (TLS), also known as Speculative Multi-threading, or Speculative Parallelization, is a technique to speculatively execute a section of computer code that is anticipated to be executed later in parallel with the normal execution on a separate independent thread. Such a speculative thread may need to make assumptions about the values of input variables. If these prove to be invalid, then the portions of the speculative thread that rely on these input variables will need to be discarded and squashed. If the assumptions are correct the program can complete in a shorter time provided the thread was able to be scheduled efficiently.

<span class="mw-page-title-main">Jeannette Wing</span> American computer scientist

Jeannette Marie Wing is Avanessians Director of the Data Science Institute at Columbia University, where she is also a professor of computer science. Until June 30, 2017, she was Corporate Vice President of Microsoft Research with oversight of its core research laboratories around the world and Microsoft Research Connections. Prior to 2013, she was the President's Professor of Computer Science at Carnegie Mellon University, Pittsburgh, Pennsylvania, United States. She also served as assistant director for Computer and Information Science and Engineering at the NSF from 2007 to 2010. She was appointed the Columbia University executive vice president for research in 2021.

ProActive Parallel Suite is an open-source software for enterprise workload orchestration, part of the OW2 community. A workflow model allows a set of executables or scripts, written in any language, to be defined along with their dependencies, so ProActive Parallel Suite can schedule and orchestrate executions while optimising the use of computational resources.

In computing, software engineering, and software testing, a test oracle is a mechanism for determining whether a test has passed or failed. The use of oracles involves comparing the output(s) of the system under test, for a given test-case input, to the output(s) that the oracle determines that product should have. The term "test oracle" was first introduced in a paper by William E. Howden. Additional work on different kinds of oracles was explored by Elaine Weyuker.

Extended static checking (ESC) is a collective name in computer science for a range of techniques for statically checking the correctness of various program constraints. ESC can be thought of as an extended form of type checking. As with type checking, ESC is performed automatically at compile time. This distinguishes it from more general approaches to the formal verification of software, which typically rely on human-generated proofs. Furthermore, it promotes practicality over soundness, in that it aims to dramatically reduce the number of false positives at the cost of introducing some false negatives. ESC can identify a range of errors that are currently outside the scope of a type checker, including division by zero, array out of bounds, integer overflow and null dereferences.

ConcurTaskTrees (CTT) is a notation for task model specifications useful to support design of interactive applications specifically tailored for user interface model-based design.

Join-patterns provides a way to write concurrent, parallel and distributed computer programs by message passing. Compared to the use of threads and locks, this is a high level programming model using communication constructs model to abstract the complexity of concurrent environment and to allow scalability. Its focus is on the execution of a chord between messages atomically consumed from a group of channels.

Inductive programming (IP) is a special area of automatic programming, covering research from artificial intelligence and programming, which addresses learning of typically declarative and often recursive programs from incomplete specifications, such as input/output examples or constraints.

Mathai Joseph is an Indian computer scientist and author.

References

  1. 1 2 X Martorell; J Labarta; N Navarro. "Nano-Threads Library Design, Implementation and Evaluation". CiteSeerX   10.1.1.54.3455 .{{cite journal}}: Cite journal requires |journal= (help)
  2. D Nikolopoulos; E Polychronopoulos (1998). "Efficient runtime thread management for the nano-threads programming model". Parallel and Distributed Processing (PDF). Lecture Notes in Computer Science. Vol. 1388. Springer. pp. 183–194. doi:10.1007/3-540-64359-1_688. ISBN   978-3-540-64359-3. S2CID   6267706.
  3. CN delle Ricerche; P GmbH. "Nano Threads: Programming Model Specification". ac.upc.edu. Retrieved 14 September 2010.[ permanent dead link ]