Nanoracks CubeSat Deployer

Last updated

Nanoracks CubeSat Deployer NanoRacks CubeSat Deployer deploying SHARC.jpg
Nanoracks CubeSat Deployer

The Nanoracks CubeSat Deployer (NRCSD) is a device to deploy CubeSats into orbit from the International Space Station (ISS).

Contents

In 2014, two CubeSat deployers were on board the International Space Station (ISS): the Japanese Experiment Module (JEM) Small Satellite Orbital Deployer (J-SSOD) and the Nanoracks CubeSat Deployer (NRCSD). The J-SSOD is the first of its kind to deploy small satellites from the International Space Station (ISS). The NRCSD is the first commercially operated small satellite deployer from the ISS, maximizing full capabilities of each airlock cycle[ clarification needed ] of deployments.

CubeSats belong to a class of research spacecraft called nanosatellites. The basic cube-shaped satellites measure 10 cm (3.9 in) on each side, weigh less than 1.4 kg (3.1 lb), and have a volume of about 1 L (0.22 imp gal; 0.26 US gal), although there are CubeSats which are built and deployed with sizes of multiples of 10 cm in length.

As of 2014, one method of getting CubeSats to orbit is to transport them aboard a larger spacecraft as part of a cargo load to a larger space station. When this is done, deploying the CubeSats into orbit as a separate artificial satellite requires a special apparatus, such as the Nanoracks CubeSat Deployer. The NRCSD is put into position to be grabbed by one of the ISS's robotic arms, which then places the CubeSat deployer into the correct position externally mounted to the ISS to be able to release the miniature satellites into proper orbit.

Background

The International Space Station was designed to be used as both a microgravity laboratory, as well as a launch pad for low Earth orbit services. The Japanese Space Agency's (JAXA) Kibō ISS module includes a small satellite-deployment system called the J-SSOD. [1]

Nanoracks, via its Space Act Agreement with NASA, deployed a CubeSat using the J-SSOD. Seeing the emerging market demand for CubeSats, Nanoracks self-funded its own ISS deployer, with the permission of both NASA and JAXA. Nanoracks evolved away from the J-SSOD due to the small number of satellites that could be deployed in one airlock cycle and their desire to maximize the capacity of each airlock cycle. The J-SSOD used a full airlock cycle to only launch 6U. The Nanoracks CubeSat Deployer uses two airlock cycles, each holding 8 deployers. Each deployer is capable of holding 6U, allowing a total of 48U per airlock cycle. [2] [ non-primary source needed ]

Deploying CubeSats from ISS has a number of benefits. Launching the vehicles aboard the logistics carrier of ISS visiting vehicle reduces the vibration and loads they have to encounter during launch. In addition, they can be packed in protective materials so that the probability of CubeSat damage during launch is reduced significantly. In addition, for earth observation satellites, such as those of Planet Labs, the lower orbit of the ISS orbit, at roughly 400 km, is an advantage. In addition, the lower orbit allows a natural decay of the satellites, thus reducing the build-up of orbital debris.[ citation needed ]

History

JEM Small Satellite Orbital Deployer

The Japanese Experiment Module Small Satellite Orbital Deployer (J-SSOD) is the first of its kind to deploy small satellites from the International Space Station. The facility provides a unique satellite install case to the Japanese Experiment Module (JEM) Remote Manipulator System (RMS) for deploying small, CubeSat, satellites from the ISS. [3] The J-SSOD holds up to 3 small one-unit (1U, 10 x 10 x 10 cm) small CubeSats per satellite install case, 6 in total, though other sizes up to 55 x 55 x 35 cm may also be used. Each pre-packed satellite install case is loaded by crewmembers onto the Multi-Purpose Experiment Platform (MPEP) within the JEM habitable volume. [3] The MPEP platform is then attached to the JEM Slide Table inside the JEM airlock for transfer to the JEMRMS and space environment. The JEMRMS grapples and maneuvers the MPEP and J-SSOD to a predefined deployment orientation and then jettisons the small CubeSat satellites. [3]

The MPEP is a platform that acts as an interface between operations inside and outside the ISS, and the J-SSOD mechanism is installed on this platform. On 21 July 2012, JAXA launched the Kounotori 3 (HTV-3) cargo spacecraft to the ISS on Expedition 33. The J-SSOD was a payload on this flight along with five CubeSats that were planned to be deployed by the J-SSOD mounted on the JEMRMS (JEM- Remote Manipulator System), a robotic arm, later in 2012. The five CubeSats were deployed successfully on 4 October 2012 by the JAXA astronaut Akihiko Hoshide using the newly installed J-SSOD. This represented the first deployment service of J-SSOD. [4]

Nanoracks CubeSat Deployer development

In October 2013, Nanoracks became the first company to coordinate the deployment of small satellites (CubeSats/nanosatellites) from the ISS via the airlock in the Japanese Kibō module. This deployment was done by Nanoracks using J-SSOD. Nanoracks' first customer was FPT Vietnam National University, Hanoi, Vietnam. Their F-1 CubeSat was developed by young engineers and students at FSpace laboratory at FPT Vietnam National University, Hanoi. The mission of F-1 was to "survive" the space environment for one month, measuring temperature and magnetic data while taking low-resolution photos of Earth. [5]

In 2013, Nanoracks sought permission from NASA to develop their own hardware and CubeSat/SmallSat deployer to use over the JEM-Small Satellite Deployer. Nanoracks brought leadership to the American small satellite industry by building a larger deployer capable of deploying 48U of satellites. Nanoracks designed, manufactured, and tested the deployer for NASA and JAXA approval to reach the International Space Station.

The Nanoracks CubeSat Deployer was launched on 9 January 2014, on the Orbital Sciences Cygnus CRS Orb-1 mission along with 33 small satellites. [6]

Manufacturing the NRCSD

Quad-M, Inc. developed the CubeSat Deployer to be compliant with the Cal Poly standard. It was redesigned and manufactured to Nanoracks' specification for use on the International Space Station. Quad-M performed an initial design analysis to ensure a compliant design. The structural analysis included a modal analysis to evaluate vibration response, and the thermal analysis included calculations to evaluate different door coating options and an initial transient thermal analysis to estimate. In addition, Quad-M performed development tests for: the door release, the CSD/CubeSat Deployment test, random vibration test, and temperature cycling. [7]

Mission profile

Integrating the CubeSats

CubeSat integration begins with unpacking the CSD from the shipping container and then removing the Base Plate Assembly from the rear of the CSD. Next, the CubeSat is inserted from the rear and is slid up snug against the doors. Additional CubeSats are then inserted from the rear in the same progress. The Base Plate Assembly is then reinstalled. Four jack screws are then adjusted with the Pusher Plate and locked. The Containment Bolt is then removed, and the deployer is packed for shipment.

Orbital Sciences CRS Orb-1

A set of Nanoracks CubeSats is deployed by the Nanoracks CubeSat Deployer attached to the end of the Japanese robotic arm (25 February 2014). NanoRacksCubeSatLaunch ISS038-E-056389.jpg
A set of Nanoracks CubeSats is deployed by the Nanoracks CubeSat Deployer attached to the end of the Japanese robotic arm (25 February 2014).
Launch vehicle: Orbital Sciences Cygnus (Orb-1)
Launch date: 9 January 2014 [8]
Total number of CubeSats: 33
Purpose: These 28 3U CubeSats are working to build an Earth-observation constellation based solely on CubeSats. The CubeSats contain batteries that provide power to the various systems in each Dove. Each satellite has an optical telescope for acquiring high-resolution images of Earth. Each satellites uses an X-band system for the downlink of acquired images and systems telemetry at data rates of 120 Mbit/s. [9]
Purpose: This 2U CubeSat will provide a platform for students and space enthusiasts to run space-based Arduino experiments. This is a follow-up of ArduSat-1 launched in November 2013. [10]
Purpose: To use low-cost open-source hardware and software for its flight computers that will control the satellite payload. The CubeSat carries a VGA camera, a GPS receiver, a linear transponder, and an AX-25 packet radio transponder. [11]
Purpose: One of Lithuania's first satellites (together with LitSat-1). This CubeSat is equipped with a low resolution VGA camera, GPS receiver, 9k6 AX25 FSK telemetry beacon, UHF CW beacon, and a 150 mW V/U FM mode voice repeater. The satellite will transmit payload and sensor data images and three Lithuanian words. [12]
Purpose: This crowd-funded 1.3-kilogram 1U satellites that features deployable solar panels, four cameras, and communication antennas that are used to receive messages from Earth that are then transmitted at pre-determined times. [13]
Purpose: This 1U CubeSat uses body-mounted solar panels for power-generation. It is equipped with a minicomputer, radio transmitters/receivers, a power control module, and a basic attitude control system. The satellite will transmit telemetry data and temperature sensor readings from inside and outside the spacecraft. [14]

Orbital Sciences CRS Orb-2

Launch vehicle: Orbital Sciences Cygnus (Orb-2)
Launch date: 13 July 2014
Total number of CubeSats: 32
Purpose: These 28 3U CubeSats are working to build an Earth-observation constellation based solely on CubeSats. The CubeSats contain batteries that provide power to the various systems in each Dove. Each satellite has an optical telescope for acquiring high-resolution images of earth. Each satellites uses an X-band system for the downlink of acquired images and systems telemetry at data rates of 120 Mbit/s. [15]
Purpose: This satellites uses commercial off-the-shelf components to provide the basic satellites functions such as commanding, power generation and supply, and communications with the other two units of the satellites. The CubeSat will fly and Exo-Brake to orbit that is deployed once the satellite is released to demonstrate a Passive De-Orbit System for satellites. [16]
Purpose: This satellite carries a nine-channel passive microwave radiometer to demonstrate miniaturized radiometer technology in space for application in ultra-compact spacecraft systems such as high performance multi-band sounder for future weather satellites. [17]
Purpose: This satellite is equipped with Globalstar communications terminals that will perform studies involving the Globalstar communications satellite constellation. [18]
Purpose: The spacecraft will conduct technical demonstration of the satellite bus in the radiation environment in space and track systems degradation. The satellite also carries and Automatic Identification System (AIS) for tracking sea vessels around the globe, and a science experiment that looks at Graphene in space. [19]

Related Research Articles

<i>Kibō</i> (ISS module) Japanese ISS module, used on ISS press conferences

The Japanese Experiment Module (JEM), nicknamed Kibō, is a Japanese science module for the International Space Station (ISS) developed by JAXA. It is the largest single ISS module, and is attached to the Harmony module. The first two pieces of the module were launched on Space Shuttle missions STS-123 and STS-124. The third and final components were launched on STS-127.

<span class="mw-page-title-main">CubeSat</span> Miniature satellite in 10 cm cube modules

A CubeSat is a class of small satellite with a form factor of 10 cm (3.9 in) cubes. CubeSats have a mass of no more than 2 kg (4.4 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are deployed into orbit from the International Space Station, or launched as secondary payloads on a launch vehicle. As of December 2023, more than 2,300 CubeSats have been launched.

RAIKO is a Japanese satellite which was built and operated by Tohoku and Wakayama Universities. A two-unit CubeSat, RAIKO was deployed from the International Space Station (ISS) on 4 October 2012, having been launched on 21 July 2012.

<span class="mw-page-title-main">F-1 (satellite)</span> Vietnamese satellite

F-1 is a CubeSat built by FSpace laboratory at FPT University, in Hanoi, Vietnam, in partnership with Angstrom Space Technology Center (ASTC), Uppsala University, Sweden and Nanoracks LLC, United States. Its mission is to train young engineers and students about aerospace engineering and evaluate an advanced three-axis magnetometer, Spin-Dependent Tunneling Magnetometer (SDTM) designed in Sweden by ASTC.

Technology Education Satellite (TechEdSat) is a successful nano-sat flight series conducted from the NASA Ames Research Center in collaboration with numerous universities. While one of the principal aims has been to introduce young professionals and university students to the practical realm of developing space flight hardware, considerable innovations have been introduced. In addition, this evolving flight platform has tested concepts for Low Earth Orbit (LEO) sample return, as well as planetary nano-sat class mission concepts.

<span class="mw-page-title-main">Kounotori 3</span> 2012 Japanese resupply spaceflight to the ISS

Kounotori 3, also known as HTV-3, was the third flight of the Japanese H-II Transfer Vehicle. It was launched on 21 July 2012 to resupply the International Space Station (ISS) aboard the H-IIB Launch Vehicle No. 3 manufactured by Mitsubishi Heavy Industries (MHI) and JAXA. Kounotori 3 arrived at the ISS on 27 July 2012, and Expedition 32 Flight Engineer and JAXA astronaut Akihiko Hoshide used the International Space Station's Canadarm2 robotic arm to install Kounotori 3, to its docking port on the Earth-facing side (nadir) of the Harmony module at 14:34 UTC.

<span class="mw-page-title-main">Cygnus Orb-1</span> 2014 American resupply spaceflight to the ISS

Orbital-1, also known as Orb-1, was the second flight of the Orbital Sciences Cygnus cargo spacecraft, its second flight to the International Space Station (ISS) and the third launch of the company's Antares launch vehicle. The mission launched on 9 January 2014 at 18:07:05 UTC.

<span class="mw-page-title-main">Nanoracks</span> Private space hardware and services company

Nanoracks LLC is a private in-space services company which builds space hardware and in-space repurposing tools. The company also facilitates experiments and launches of CubeSats to Low Earth Orbit.

<span class="mw-page-title-main">WE WISH</span> Japanese commercial CubeSat

WE WISH was a small commercial CubeSat which was deployed from the International Space Station (ISS) in October 2012 and which deorbited in March 2013. It was built by the Japanese technology company Meisei Electric and the Meisei Amateur Radio Club, and could transmit pictures taken by a small infrared camera via radio at 437.515 MHz. WE WISH travelled to orbit aboard Kounotori 3 (HTV-3) on 21 July 2012, along with other CubeSats including RAIKO, FITSAT-1, F-1, and TechEdSat-1.

<span class="mw-page-title-main">AESP-14</span>

AESP-14 is a Brazilian 1U Cubesat developed by multiple Brazilian institutions. It was launched on 10 January 2015 aboard the SpaceX CRS-5 mission on a Falcon 9 v1.1 rocket. It was the first Brazilian Cubesat ever launched into space.

<span class="mw-page-title-main">Nanoracks Bishop Airlock</span> Component of the International Space Station

The Nanoracks Bishop Airlock is a commercially-funded airlock module launched to the International Space Station on SpaceX CRS-21 on 6 December 2020. It was berthed to the Tranquility module on 19 December 2020 by the Canadarm2. The module was built by Nanoracks, Thales Alenia Space, and Boeing. It is used to deploy CubeSats, small satellites, and other external payloads for NASA, Center for the Advancement of Science in Space (CASIS), and other commercial and governmental customers. NASA plans on using the airlock as a brand new way to dispose large pieces of trash. The name refers to the bishop chess piece, which moves diagonally.

<span class="mw-page-title-main">PicoDragon</span> Vietnamese CubeSat

PicoDragon is a small satellite that followed the 1U type of CubeSat program built by the Vietnam National Satellite Center (VNSC) which belongs to VAST and operated in space for 3 months.

<span class="mw-page-title-main">BRAC Onnesha</span> First Bangladeshi nanosatellite

BRAC Onnesha was the first nanosatellite built in Bangladesh to be launched into space. The satellite was designed and built in conjunction with Kyushu Institute of Technology Birds-1 program, which has the goal of helping countries build their first satellite. It was designed and built over a two-year period.

<span class="mw-page-title-main">RemoveDEBRIS</span>

RemoveDEBRIS was a satellite research project intending to demonstrate various space debris removal technologies. The mission was led by the Surrey Space Centre from the University of Surrey with the satellite's platform manufactured by Surrey Satellite Technology Ltd (SSTL). Partners on the project included Airbus, ArianeGroup, Swiss Center for Electronics and Microtechnology, Inria, Innovative Solutions In Space, Surrey Space Centre, and Stellenbosch University.

UBAKUSAT was a Turkish nanosatellite that was developed by Istanbul Technical University. It was launched into space on board a Falcon-9 rocket in April 2018 and was deployed into its orbit from the International Space Station in May 2018. It was built as a technology demonstration and Earth observation satellite to provide voice communications for amateur radio stations around the world. It carried an experimental card, TAMSAT Simplesat, which allowed scientists to test its accuracy of measuring radiation from space. It was the fifth satellite to be built by students of Istanbul Technical University.

AQT-D was a nanosatellite project of the University of Tokyo (UT) Space Propulsion Laboratory with the purpose of testing water-fueled propulsion. The satellite was a CubeSat of 3U size; 1U was occupied by the propulsion system, while the remaining 2U was for the spacecraft bus. AQT-D was carried to space inside the pressurized section of Kounotori 8, a Japanese resupply vehicle for the International Space Station (ISS). Kounotori 8 was launched on 24 September 2019. After arriving at the ISS, AQT-D was deployed to space on 20 November 2019 using the JEMRMS robotic arm at the space station's Kibō laboratory module.

<span class="mw-page-title-main">Cygnus NG-14</span> 2020 American resupply spaceflight to the ISS

NG-14, previously known as OA-14, was the fifteenth flight of the Northrop Grumman robotic resupply spacecraft Cygnus and its fourteenth flight to the International Space Station under the Commercial Resupply Services (CRS-1) contract with NASA. The mission was launched on 3 October 2020, at 01:16:14 UTC.

<span class="mw-page-title-main">Cygnus NG-15</span> 2021 American resupply spaceflight to the ISS

NG-15, previously known as OA-15, was the fifteenth launch of the Northrop Grumman robotic resupply spacecraft Cygnus and its fourteenth flight to the International Space Station (ISS) under the Commercial Resupply Services (CRS) contract with NASA. The mission launched on 20 February 2021 at 17:36:50 UTC. This is the fourth launch of Cygnus under the CRS-2 contract.

<span class="mw-page-title-main">SpaceX CRS-26</span> 2022 American resupply spaceflight to the ISS

SpaceX CRS-26, also known as SpX-26, was a Commercial Resupply Service mission to the International Space Station (ISS) launched on 26 November 2022. The mission was contracted by NASA and flown by SpaceX using a Cargo Dragon. This was the sixth flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016.

References

  1. "CubeSats in Orbit After Historic Space Station Deployment". NASA. 10 December 2012. Retrieved 8 December 2014.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  2. "Small Satellite Deployment from ISS - CubeSat. Smallsat Launches". Nanoracks. Retrieved 7 December 2014.
  3. 1 2 3 "J-SSOD:Experiment - International Space Station - JAXA". JAXA. Retrieved 7 December 2014.
  4. "NASA - CubeSats in Orbit After Historic Space Station Deployment". nasa.gov. NASA. Retrieved 7 December 2014.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. "F-1 and companion CubeSats to be deployed to space from Kibō module on 27 September 2013: Kibō Utilization Office for Asia (KUOA) - International Space Station - JAXA". iss.jaxa.jp. JAXA. Retrieved 7 December 2014.
  6. "Spaceflight, Nanoracks Team Up on CubeSat Launches at Parabolic Arc". Parabolic Arc. 10 January 2014. Retrieved 7 December 2014.
  7. "QUADM CNC Machine Shop, manufacturing and engineering services". Quad-M, Inc. Retrieved 7 December 2014.
  8. "ISS Commercial Resupply Services Mission (Orb-1)". Orbital Sciences. Retrieved 7 December 2014.
  9. "Flock 1". Planet Labs. Archived from the original on 30 April 2016. Retrieved 7 December 2014.
  10. "NanoSatisfi ArduSat". nanosat.jp. Retrieved 7 December 2014.
  11. "LitSat-1". litsat1.eu. Retrieved 7 December 2014.
  12. "LituanicaSAT-1 - Pirmasis palydovas Lietuvos istorijoje". kosmonautai.lt. Archived from the original on 7 June 2013. Retrieved 7 December 2014.
  13. "Southern Stars • SkyCube • Summary". Southern Stars. Retrieved 7 December 2014.
  14. "In orbit with upsat-info". uapsat.info. Retrieved 7 December 2014.
  15. "Flock 1". Planet Labs. Retrieved 7 December 2014.
  16. "NASA - The Development of On-Demand Sample Return Capability (SPQR)". NASA. Retrieved 7 December 2014.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  17. "MicroMAS: Small is Beautiful (MIT - Massachusetts Institute of Technology)". World News. Retrieved 7 December 2014.
  18. Spaceflight 101 Orb-2 Cargo Manifest Archived July 14, 2014, at the Wayback Machine
  19. "Lambdasat (Λ-sat)". Space.skyrocket.de. Retrieved 7 December 2014.