Network resource planning

Last updated
Diagram describing the integration of business planning, marketing and engineering in Network Resource Planning, as well as its end results. Network Resource Planning Diagram.JPG
Diagram describing the integration of business planning, marketing and engineering in Network Resource Planning, as well as its end results.

Network Resource Planning is an enhanced process of network planning that incorporates the disciplines of business planning, marketing, and engineering to develop integrated, dynamic master plans for all domains of communications networks.

Contents

Next generation services

Many communications service providers - from wireline, wireless, broadband to next generation carriers - are introducing next-generation services such as interactive video over cell phones and multi-user conference calling. [1] These new services are straining the capacity of existing networks. In a 2006 Reuters interview, John Roese, CTO of Nortel, pointed out that YouTube almost destroyed the Internet, [2] and in a keynote speech at Cisco’s C-Scape analyst conference in December 2006, John Chambers, CEO of Cisco Networks said, “Things like YouTube are just the baby steps of the impact video will have on networks.” Since every video transmission requires roughly 150 times the bandwidth of a voice transmission, it is estimated that a one percent adoption of the Verizon Wireless V CAST service required a 400 percent increase in Verizon’s corresponding network capacity.

The bandwidth-intense nature of next generation services has required traditional network planning to evolve. Subscriber growth of legacy services like voice and data had an incremental impact on networks. New subscriptions and their corresponding bandwidth demand followed a relatively linear growth curve. As such, planning methods such as link- and node-specific forecasting or “trending” were sufficient to ensure networks could support current and planned subscribers.

The dramatic swings in bandwidth demand that slight variances in subscription rates bring to bear on networks carrying services such as video can no longer be adequately planned for with these traditional methods. Network Resource Planning addresses the weaknesses of trending by incorporating business planning and marketing insight in the planning process. The addition of market analysis adds an additional layer of context and provides a feedback loop that enables more accurate planning. Furthermore, the importance of coordinating infrastructure investment activities across organizations is addressed to ensure that network capacity is provided when and where it is needed, and that human and operational support system resources are appropriately included in the planning process.

Next generation networks

The bandwidth needs of next generation services has placed added pressure on carriers to migrate from traditional networks like PSTN and TDMA to new Internet Protocol (IP)-based, or next generation networks, that can more adequately support the new services. Planning the transition to IP-based networks is a difficult endeavor in many respects. The capital expenditure (CAPEX) challenge of these new networks is that while it is remains expensive to make a mistake and deploy too much equipment (i.e., over-building their network and wasting assets), the non-linear relationship between bandwidth and network requirements means there are also significant costs from deploying too little (i.e., under-building the network and putting themselves at a higher chance of delivering poor quality of service and losing market share).

From a technical perspective, the new IP-based networks are also far more difficult to plan. The self-routing nature of IP networks requires planners to determine how the network will behave under normal, overloaded, and failure scenarios. The fact that IP can drop or delay packets during overload conditions introduces new complexity to the system. Interactive services such as voice, two-way video, and gaming are particularly susceptible to the resultant digital jitter and delay. Under these circumstances, the network planners need to know how these services will be affected under varying conditions. In addition, they need to know how the network can be configured to provide the best quality of service at the least cost. [3]

The issue is further compounded by the fact that the simplicity of IP network operations comes from a more uniform, layered approach to network architecture. It’s the interaction between the layers of the network that creates significant complexity. For example, routine services can run on an IP (and/or Ethernet) network, while high-QoS services are assigned to special routes. These services ride on the underlying logical transport network (ring or mesh), which in turn rides on the underlying optical infrastructure. For planning teams, the effect of traffic on each layer must be taken into account in the other layers. This situation is made even more complex when reliability and disaster scenarios come into play, as backup resources must be made available at each layer in the hierarchy. [3]

Traditionally, network planning was performed on a domain-by-domain (i.e., transport, access, etc.) and isolated basis. Network Resource Planning has adapted to address the shared-fabric nature of IP networks by integrating planning across domains. Network planners have a much more powerful tool in Network Resource Planning for leveraging all of the strengths of the various domains in comprehensive master plans. Over the next five years, the vast majority of tier-1 and -2 service providers are expected to shift to convergent network planning systems to handle the complexity of these networks, as well as reduce CAPEX and operational costs. [4]

Related Research Articles

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network, or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc.

The Session Initiation Protocol (SIP) is a signaling protocol used for initiating, maintaining, and terminating communication sessions that include voice, video and messaging applications. SIP is used in Internet telephony, in private IP telephone systems, as well as mobile phone calling over LTE (VoLTE).

<span class="mw-page-title-main">Frame Relay</span> Wide area network technology

Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.

Telephony is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is intimately linked to the invention and development of the telephone.

<span class="mw-page-title-main">Cable modem</span> Broadband Internet access device

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fibre-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

Voice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for voice calls for the delivery of voice communication sessions over Internet Protocol (IP) networks, such as the Internet.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

An overlay network is a computer network that is layered on top of another network. The concept of overlay networking is distinct from the traditional model of OSI layered networks, and almost always assumes that the underlay network is an IP network of some kind.

<span class="mw-page-title-main">G.729</span> ITU-T Recommendation

G.729 is a royalty-free narrow-band vocoder-based audio data compression algorithm using a frame length of 10 milliseconds. It is officially described as Coding of speech at 8 kbit/s using code-excited linear prediction speech coding (CS-ACELP), and was introduced in 1996. The wide-band extension of G.729 is called G.729.1, which equals G.729 Annex J.

The next-generation network (NGN) is a body of key architectural changes in telecommunication core and access networks. The general idea behind the NGN is that one network transports all information and services by encapsulating these into IP packets, similar to those used on the Internet. NGNs are commonly built around the Internet Protocol, and therefore the term all IP is also sometimes used to describe the transformation of formerly telephone-centric networks toward NGN.

In IP-based computer networks, virtual routing and forwarding (VRF) is a technology that allows multiple instances of a routing table to co-exist within the same router at the same time. One or more logical or physical interfaces may have a VRF and these VRFs do not share routes. Therefore, the packets are only forwarded between interfaces on the same VRF. VRFs are the TCP/IP layer 3 equivalent of a VLAN. Because the routing instances are independent, the same or overlapping IP addresses can be used without conflicting with each other. Network functionality is improved because network paths can be segmented without requiring multiple routers.

Cisco Certifications are the list of the Certifications offered by Cisco Systems. There are four to five levels of certification: Associate (CCNA/CCDA), Professional (CCNP/CCDP), Expert (CCIE/CCDE) and recently, Architect, as well as nine different paths for the specific technical field; Routing & Switching, Design, Industrial Network, Network Security, Service Provider, Service Provider Operations, Storage Networking, Voice, Datacenter and Wireless.
There are also a number of specialist technicians, sales, Business, data center certifications and CCAI certified instructors.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.

<span class="mw-page-title-main">Core router</span> Router used on the internet backbone and on internet exchanges

A core router is a router designed to operate in the Internet backbone, or core. To fulfill this role, a router must be able to support multiple telecommunications interfaces of the highest speed in use in the core Internet and must be able to forward IP packets at full speed on all of them. It must also support the routing protocols being used in the core. A core router is distinct from an edge router: edge routers sit at the edge of a backbone network and connect to core routers.

Connection-oriented Ethernet refers to the transformation of Ethernet, a connectionless communication system by design, into a connection-oriented system. The aim of connection-oriented Ethernet is to create a networking technology that combines the flexibility and cost-efficiency of Ethernet with the reliability of connection-oriented protocols. Connection-oriented Ethernet is used in commercial carrier grade networks.

Unified communications (UC) is a business and marketing concept describing the integration of enterprise communication services such as instant messaging (chat), presence information, voice, mobility features, audio, web & video conferencing, fixed-mobile convergence (FMC), desktop sharing, data sharing, call control and speech recognition with non-real-time communication services such as unified messaging. UC is not necessarily a single product, but a set of products that provides a consistent unified user interface and user experience across multiple devices and media types.

The Innovative Communications Alliance (ICA) was a telecommunications alliance between Microsoft and Nortel, created in July 2006, to co-develop, integrate, market, sell, and support unified communications products. The goal of the alliance is to make integrated hardware and software solutions that join together voice, video, and data communications without requiring gateways or middleware. Microsoft and Nortel share developing technologies and patents for unified communications products.

<span class="mw-page-title-main">Optical mesh network</span> Optical network using a mesh topology

An optical mesh network is a type of optical telecommunications network employing wired fiber-optic communication or wireless free-space optical communication in a mesh network architecture.

References

  1. Cotrupe, Jeffrey (February 2007). "OSS/BSS Shopping List for 2007. Part 1: Network Planning – An EMA Advisory Note" (PDF). Enterprise Management Associates. p. 6. Archived from the original (PDF) on 2008-10-31. Retrieved 2009-09-10.
  2. Dabrowski, Wojtek (2006-10-20). "Video-hungry Users Could Push Net to the Brink: Nortel". Reuters. Retrieved 2006-10-20.
  3. 1 2 Mortensen, Mark. "Five Big Mistakes Carriers Make When Planning a Next-Generation Network". Telephony Online. Retrieved 2007-03-26.
  4. McElligott, Tim. "VPIsystems delivers a plan for the future". Telephony Online. Retrieved 2006-11-20.