Neurotrophic electrode

Last updated
The neurotrophic electrode: teflon-coated gold wires extend from the back of the glass cone, while neurites (shown in blue) grow through it. Neurotrophic Electrode2.JPG
The neurotrophic electrode: teflon-coated gold wires extend from the back of the glass cone, while neurites (shown in blue) grow through it.

The neurotrophic electrode is an intracortical device designed to read the electrical signals that the brain uses to process information. It consists of a small, hollow glass cone attached to several electrically conductive gold wires. The term neurotrophic means "relating to the nutrition and maintenance of nerve tissue" and the device gets its name from the fact that it is coated with Matrigel and nerve growth factor to encourage the expansion of neurites through its tip. [1] It was invented by neurologist Dr. Philip Kennedy and was successfully implanted for the first time in a human patient in 1996 by neurosurgeon Roy Bakay. [2]

Contents

Background

Motivation for development

Victims of locked-in syndrome are cognitively intact and aware of their surroundings, but cannot move or communicate due to near complete paralysis of voluntary muscles. In early attempts to return some degree of control to these patients, researchers used cortical signals obtained with electroencephalography (EEG) to drive a mouse cursor. However, EEG lacks the speed and precision that can be obtained by using a direct cortical interface. [3]

Patients with other motor diseases, such as amyotrophic lateral sclerosis and cerebral palsy, as well as those who have suffered a severe stroke or spinal cord injury, also can benefit from implanted electrodes. Cortical signals can be used to control robotic limbs, so as the technology improves and the risks of the procedure are reduced, direct interfacing may even provide assistance for amputees. [4]

Design development

When Dr. Kennedy was designing the electrode, he knew he needed a device that would be wireless, biologically compatible, and capable of chronic implantation. Initial studies with Rhesus monkeys and rats demonstrated that the neurotrophic electrode was capable of chronic implantation for as long as 14 months (human trials would later establish even greater robustness). [5] This longevity was invaluable for the studies because while the monkeys were being trained at a task, neurons that were initially silent began firing as the task was learned, a phenomenon that would not have been observable if the electrode was not capable of long term implantation. [1]

Components

Glass cone

The glass cone is only 1–2 mm long, and is filled with trophic factors in order to encourage axons and dendrites to grow through its tip and hollow body. When the neurites reach the back end of the cone, they rejoin with the neuropil on that side, which anchors the glass cone in place. As a result, stable and robust long-term recording is attainable. [6] The cone sits with its tip near layer five of the cortex, among corticospinal tract cell bodies, and is inserted at an angle of 45° from the surface, about 5 or 6 mm deep. [7]

Gold wires

Three or four gold wires are glued to the inside of the glass cone and protrude out the back. They record the electrical activity of the axons that have grown through the cone, and are insulated with Teflon. The wires are coiled so as to relieve strain because they are embedded in the cortex on one end and attached to the amplifiers, which are fixed to the inside of the skull, on the other. Two wires are plugged into each amplifier to provide differential signalling. [7]

Wireless transmitter

One of the greatest strengths of the neurotrophic electrode is its wireless capability, because without transdermal wiring, the risk of infection is significantly reduced. As neural signals are collected by the electrodes, they travel up the gold wires and through the cranium, where they are passed on to the bioamplifiers (usually implemented by differential amplifiers). The amplified signals are sent through a switch to a transmitter, where they are converted to FM signals and broadcast with an antenna. The amplifiers and the transmitters are powered by a 1 MHz induction signal that is rectified and filtered. The antenna, amplifiers, analog switches, and FM transmitters are all contained in a standard surface mount printed circuit board that sits just under the scalp. The whole ensemble is coated in protective gels, Parylene, Elvax, and Silastic, to make it biocompatible and to protect the electronics from fluids. [7]

Data acquisition system

On the outside of the patient's scalp rests the corresponding induction coil and an antenna that sends the FM signal to the receiver. These devices are temporarily held in place with a water-soluble paste. The receiver demodulates the signal and sends it to the computer for spike sorting and data recording. [7]

Assembly

Most of the neurotrophic electrode is made by hand. The gold wires are cut to the correct length, coiled, and then bent to an angle of 45° just above the point of contact with the cone in order to limit the implantation depth. One more bend in the opposite direction is added where the wires pass through the skull. The tips are stripped of their Teflon coating, and the ones farthest from the cone are soldered and then sealed with dental acrylic to a component connector. The glass cone is made by heating and pulling a glass rod to a point and then cutting the tip at the desired length. The other end is not a straight cut, but rather is carved at an angle to provide a shelf onto which the gold wires can be attached. The wires are then placed on the shelf and a methyl methacrylate gel glue is applied in several coats, with care taken to avoid covering the conductive tips. Lastly, the device is sterilized using glutaraldehyde gas at a low temperature, and aerated. [7]

Implementation

Computer cursor control

One of Dr. Kennedy's patients, Johnny Ray, was able to learn how to control a computer cursor with the neurotrophic electrode. Three distinct neural signals from the device were correlated with cursor movement along the x-axis, along the y-axis, and a "select" function, respectively. Movement in a given direction was triggered by an increase in neuron firing rate on the associated channel. [3]

Speech synthesis

Neural signals elicited from another of Dr. Kennedy's patients have been used to formulate vowel sounds using a speech synthesizer in real time. The electronics setup was very similar to that used for the cursor, with the addition of a post-receiver neural decoder and the synthesizer itself. Researchers implanted the electrode in the area of the motor cortex associated with the movement of speech articulators because a pre-surgery fMRI scan indicated high activity there during a picture naming task. The average delay from neural firing to synthesizer output was 50 ms, which is approximately the same as the delay for an intact biological pathway. [8]

Comparison to other recording methods

The neurotrophic electrode, as described above, is a wireless device, and transmits its signals transcutaneously. In addition, it has demonstrated longevity of over four years in a human patient, because every component is completely biocompatible. Recent data from a locked-in person implanted for 13 years clearly show no scarring and many myelinated neurafilaments (axons)[12] [9] So the longevity question has been answered for the Neurotrophic Electrode. In comparison, the wire type electrodes (Utah array) lose signal over months and years: The Utah array loses 85% of its signals over 3 years[13], [10] so it cannot be considered for long term human usage. The ECOG system loses signals in less than 2 years[14]. [11] Many emerging electrode types, such as those being developed by Neuralink, still suffer from similar problems. Data from metal electrodes, however, are very useful in the short term and have produced copious amounts of very useful data in the brain to computer research space.

The Neurotrophic Electrode was limited in the amount of information it could provide, however, because the electronics it used to transmit its signal required so much space on the scalp only four could fit on a human skull. [2] This is becoming less of an issue over time as amplifier technology improves. Additionally, small electrode numbers have proven to still be useful. There are about 20 single unit per electrode, and recent results demonstrate one electrode with 23 single units could decode audible and silent speech, specifically phones, words and phrases[15]. [12]

Alternatively, the Utah array is currently a wired device, but transmits more information. It has been implanted in a human for over two years and consists of 100 conductive silicon needle-like electrodes, so it has high resolution and can record from many individual neurons. [13] The Neurotrophic Electrode has high resolution also as evidenced by the importance of slow firing units that are generally dismissed by other groups[16]. [14]

In one experiment, Dr. Kennedy adapted the neurotrophic electrode to read local field potentials (LFPs). He demonstrated that they are capable of controlling assistive technology devices, suggesting that less invasive techniques can be used to restore functionality to locked-in patients. However, the study did not address the degree of control possible with LFPs or make a formal comparison between LFPs and single unit activity. [15] It was the first study to show that LFPs could be used to control a device.

Electroencephalography (EEG) involves the placement of many surface electrodes on the patient's scalp, in an attempt to record the summed activity of tens of thousands to millions of neurons. EEG has the potential for long term use as a brain-computer interface, because the electrodes can be kept on the scalp indefinitely. The temporal and spatial resolutions and signal to noise ratios of EEG have always lagged behind those of comparable intracortical devices, but it has the advantage of not requiring surgery. [13]

Electrocorticography (ECoG) records the cumulative activity of hundreds to thousands of neurons with a sheet of electrodes placed directly on the surface of the brain. In addition to requiring surgery and having low resolution, the ECoG device is wired, meaning the scalp cannot be completely closed, increasing the risk of infection. However, researchers investigating ECoG claim that the grid "possesses characteristics suitable for long term implantation". [13] Their published data indicates loss of signal within two years[14].

Drawbacks

Activation delay

The neurotrophic electrode is not active immediately after implantation because the axons must grow into the cone before the device can pick up electrical signals. Studies have shown that tissue growth is largely complete as early as one month after the procedure, but takes as many as four months to stabilize. [1] A four month delay is not a disadvantage when considering the lifetime of the locked-in person who expects to move or speak again.

Surgery risks

The risks involved with the implantation are those that are usually associated with brain surgery, namely, the possibility of bleeding, infection, seizures, stroke, and brain damage. Until the technology advances to the point that these risks are considerably reduced, the procedure will be reserved for extreme or experimental cases. [2] Only one of Neural Signals's six patients, Dr. Kennedy himself, had any complications. He experienced a short lived episode of focal motor seizures and brain swelling leading to temporary weakness on the contralateral side of the body. [16]

Device failure

When Johnny Ray was implanted in 1998, one of the neurotrophic electrodes started providing an intermittent signal after it had become anchored in the neuropil, and as a result, Dr. Kennedy was forced to rely on the remaining devices. This was due to a problem with the electronics, NOT the electrode. [3] Therefore, even if there is no complication from surgery, there is still a possibility that the electronics will fail. It is easy to change out the electronics. In addition, while the implants themselves are encased in the skull and are therefore relatively safe from physical damage, the electronics on the outside of the skull under the scalp are vulnerable. Two of Dr. Kennedy's patients accidentally caused damage during spasms, but in both cases only the external devices needed to be replaced. [7]

Future applications

Neuroprosthetics

As of November 2010, Dr. Kennedy is working on the speech synthesis application of the electrode, but has plans to expand its uses to many different areas, one of which is restoring movement with neuroprosthetics. [2]

Silent speech

Silent speech is "speech processing in the absence of an intelligible acoustic signal" to be used primarily as an aid for the locked-in person. Silent speech has successfully been decoded[12]. A secondary aim is to use audible or silent speech as a "cell phone under the scalp with the electrodes entering the speech motor cortex," i.e. as a consumer item. According to Phil Kennedy,

The reader may recoil at such an idea. But let me explain. Think of all the benefits of having a continuously accessible private cell phone in your body. To wit: “I need to contact so and so, I need to ask Siri a question, I need to access the cloud and receive information, I need to perform a calculation using access to the cloud, I need to use the Internet, I need to know what my stocks are doing, I need to know where my children are, I have fallen and need to contact EMS, and so on. I can text them or I can call them just with a thought, no need to find my phone and tap on it.” The cell phone under the scalp will bypass that step. It will provide continuous communication at will, and can be turned off as desired. Furthermore, it is worth recalling that history shows people will not shun devices that are imperceptible to them, that is, implanted under the skin or scalp. Consider how cardiac pacemakers were first rejected because they were bulky and had to be carried outside the body. Now they are totally implanted and routinely prescribed to patients. To my way of thinking, this uncomfortable development is also inevitable.

So my prediction is that from assisting people in need, we proceed to help people with a consumer product. Analogously, if the people in need are the tail of the dog (the whole dog being all humanity) then instead of the dog wagging the tail, the tail will wag the dog!

Related Research Articles

<span class="mw-page-title-main">Brain–computer interface</span> Direct communication pathway between an enhanced or wired brain and an external device

A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI) or smartbrain, is a direct communication pathway between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. They are often conceptualized as a human–machine interface that skips the intermediary component of the physical movement of body parts, although they also raise the possibility of the erasure of the discreteness of brain and machine. Implementations of BCIs range from non-invasive and partially invasive to invasive, based on how close electrodes get to brain tissue.

Neurotechnology encompasses any method or electronic device which interfaces with the nervous system to monitor or modulate neural activity.

BrainGate is a brain implant system, currently under development and in clinical trials, designed to help those who have lost control of their limbs, or other bodily functions, such as patients with amyotrophic lateral sclerosis (ALS) or spinal cord injury. The Braingate technology and related Cyberkinetic’s assets are now owned by privately held Braingate, Co. The sensor, which is implanted into the brain, monitors brain activity in the patient and converts the intention of the user into computer commands.

Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern brain implants and the focus of much current research is establishing a biomedical prosthesis circumventing areas in the brain that have become dysfunctional after a stroke or other head injuries. This includes sensory substitution, e.g., in vision. Other brain implants are used in animal experiments simply to record brain activity for scientific reasons. Some brain implants involve creating interfaces between neural systems and computer chips. This work is part of a wider research field called brain–computer interfaces.

Neuroprosthetics is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality.

Neural engineering is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs.

In neuroscience, single-unit recordings provide a method of measuring the electro-physiological responses of a single neuron using a microelectrode system. When a neuron generates an action potential, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the soma and axon. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time. These microelectrodes must be fine-tipped, impedance matching; they are primarily glass micro-pipettes, metal microelectrodes made of platinum, tungsten, iridium or even iridium oxide. Microelectrodes can be carefully placed close to the cell membrane, allowing the ability to record extracellularly.

<span class="mw-page-title-main">Electrocorticography</span>

Electrocorticography (ECoG), a type of intracranial electroencephalography (iEEG), is a type of electrophysiological monitoring that uses electrodes placed directly on the exposed surface of the brain to record electrical activity from the cerebral cortex. In contrast, conventional electroencephalography (EEG) electrodes monitor this activity from outside the skull. ECoG may be performed either in the operating room during surgery or outside of surgery. Because a craniotomy is required to implant the electrode grid, ECoG is an invasive procedure.

A Bioamplifier is an electrophysiological device, a variation of the instrumentation amplifier, used to gather and increase the signal integrity of physiologic electrical activity for output to various sources. It may be an independent unit, or integrated into the electrodes.

A visual prosthesis, often referred to as a bionic eye, is an experimental visual device intended to restore functional vision in those with partial or total blindness. Many devices have been developed, usually modeled on the cochlear implant or bionic ear devices, a type of neural prosthesis in use since the mid-1980s. The idea of using electrical current to provide sight dates back to the 18th century, discussed by Benjamin Franklin, Tiberius Cavallo, and Charles LeRoy.

<span class="mw-page-title-main">Electroencephalography</span> Electrophysiological monitoring method to record electrical activity of the brain

Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG". Clinical interpretation of EEG recordings is most often performed by visual inspection of the tracing or quantitative EEG analysis.

Neurostimulation is the purposeful modulation of the nervous system's activity using invasive or non-invasive means. Neurostimulation usually refers to the electromagnetic approaches to neuromodulation.

A hippocampus prosthesis is a type of cognitive prosthesis. Prosthetic devices replace normal function of a damaged body part; this can be simply a structural replacement or a rudimentary, functional replacement.

Intracortical encephalogram signal analysis (minedICE) is the learning and subsequent prediction of electrical activity inside the grey matter of the brain produced by the firing of neurons within the brain. The device was made by clinical researchers and medical Doctors at Columbia University, University of Colorado at Anschutz Medical Campus, and the University of Colorado at Colorado Springs.

Frank H. Guenther is an American computational and cognitive neuroscientist whose research focuses on the neural computations underlying speech, including characterization of the neural bases of communication disorders and development of brain–computer interfaces for communication restoration. He is currently a professor of speech, language, and hearing sciences and biomedical engineering at Boston University.

Stentrode is a small stent-mounted electrode array permanently implanted into a blood vessel in the brain, without the need for open brain surgery. It is in clinical trials as a brain–computer interface (BCI) for people with paralyzed or missing limbs, who will use their neural signals or thoughts to control external devices, which currently include computer operating systems. The device may ultimately be used to control powered exoskeletons, robotic prosthesis, computers or other devices.

A chronic electrode implant is an electronic device implanted chronically into the brain or other electrically excitable tissue. It may record electrical impulses in the brain or may stimulate neurons with electrical impulses from an external source.

A cortical implant is a subset of neuroprosthetics that is in direct connection with the cerebral cortex of the brain. By directly interfacing with different regions of the cortex, the cortical implant can provide stimulation to an immediate area and provide different benefits, depending on its design and placement. A typical cortical implant is an implantable microelectrode array, which is a small device through which a neural signal can be received or transmitted.

<span class="mw-page-title-main">Mind-controlled wheelchair</span>

A mind-controlled wheelchair is a motorized wheelchair controlled by a brain–computer interface. Such a wheelchair could be of great importance to patients with locked-in syndrome (LIS), in which a patient is aware but cannot move or communicate verbally due to complete paralysis of nearly all voluntary muscles in the body except the eyes. Such wheelchairs can also be used in case of muscular dystrophy, a disease that weakens the musculoskeletal system and hampers locomotion.

Precision Neuroscience is an American brain–computer interface (BCI) company based in New York City and with offices in Mountain View, California, Addison, Texas and Minneapolis, Minnesota.

References

  1. 1 2 3 Kennedy, P. R., & Bakay, R. A. E. (1997). Activity of single action potentials in monkey motor cortex during long-term task learning. Brain Research, 760(1-2), 251-254.
  2. 1 2 3 4 Interview with Dr. Kennedy, Senior Research Scientist, Neural Signals, Inc., 9/30/2010
  3. 1 2 3 Kennedy, P. R., Bakay, R. A. E., Moore, M. M., Adams, K., & Goldwaithe, J. (2000). Direct control of a computer from the human central nervous system. [Article]. IEEE Transactions on Rehabilitation Engineering, 8(2), 198-202.
  4. Lebedev, M. A., & Nicolelis, M. A. L. (2006). Brain-machine interfaces: past, present and future. [Review]. Trends in Neurosciences, 29(9), 536-546.
  5. Kennedy, P. R., Mirra, S. S., & Bakay, R. A. E. (1992). THE CONE ELECTRODE - ULTRASTRUCTURAL STUDIES FOLLOWING LONG-TERM RECORDING IN RAT AND MONKEY CORTEX. [Article]. Neuroscience Letters, 142(1), 89-94.
  6. Kennedy, P. R. (1989). THE CONE ELECTRODE - A LONG-TERM ELECTRODE THAT RECORDS FROM NEURITES GROWN ONTO ITS RECORDING SURFACE. [Article]. Journal of Neuroscience Methods, 29(3), 181-193.
  7. 1 2 3 4 5 6 Bartels, J., Andreasen, D., Ehirim, P., Mao, H., Seibert, S., Wright, E. J., et al. (2008). Neurotrophic electrode: Method of assembly and implantation into human motor speech cortex. [Article]. Journal of Neuroscience Methods, 174(2), 168-176.
  8. Guenther, F. H., Brumberg, J. S., Wright, E. J., Nieto-Castanon, A., Tourville, J. A., Panko, M., et al. (2009). A Wireless Brain-Machine Interface for Real-Time Speech Synthesis. PLoS ONE, 4(12).
  9. Gearin M and Kennedy PR. Histological confirmation of myelinated neural filaments within the tip of the Neurotrophic Electrode after a decade of neural recordings. Front. Hum. Neurosci. 21 April 2020.
  10. Intracortical recording stability in human brain-computer interface users. Downey JE1, Schwed N, Chase SM, Schwartz AB, Collinger JL. J Neural Eng. 2018 Aug;15(4):046016.
  11. Degenhart, A. D., Eles, J., Dum, R., Mischel, J. L., Smalianchuk, I., Endler, B., et al. (2016). Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J. Neural Eng. 13:046019. doi: 10.1088/1741-2560/13/4/046019
  12. Kennedy P.R., Gambrell C, Ehirim P, and Cervantes A. Advances in the development of a speech prosthesis. Book chapter in Brain-Machine Interfaces: Uses and Developments accepted 2017
  13. 1 2 3 Brumberg, J. S., Nieto-Castanon, A., Kennedy, P. R., & Guenther, F. H. (2010). Brain-computer interfaces for speech communication. Speech Communication, 52(4), 367-379.
  14. Ganesh, A, Cervantes, A J and Kennedy PR, Slow firing single units are essential for optimal decoding of silent speech. Submitted to Computer Speech and Language 2020
  15. Kennedy, P. R., Kirby, M. T., Moore, M. M., King, B., & Mallory, A. (2004). Computer control using human intracortical local field potentials. [Article]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(3), 339-344.
  16. Engber, Daniel. "The Neurologist Who Hacked His Brain—And Almost Lost His Mind". Wired. ISSN   1059-1028 . Retrieved 2022-03-08.