No-slip condition

Last updated

In fluid dynamics, the no-slip condition is a boundary condition which enforces that at a solid boundary, a viscous fluid attains zero bulk velocity. This boundary condition was first proposed by Osborne Reynolds, who observed this behaviour while performing his influential pipe flow experiments. [1] The form of this boundary condition is an example of a Dirichlet boundary condition.

Contents

In the majority of fluid flows relevant to fluids engineering, the no-slip condition is generally utilised at solid boundaries. [2] This condition often fails for systems which exhibit non-Newtonian behaviour. Fluids which this condition fails includes common food-stuffs which contain a high fat content, such as mayonnaise or melted cheese. [3]

Physical justification

Particles close to a surface do not move along with a flow when adhesion is stronger than cohesion. At the fluid-solid interface, the force of attraction between the fluid particles and solid particles (adhesive forces) is greater than that between the fluid particles (cohesive forces). This force imbalance causes the fluid velocity to be zero adjacent to the solid surface, with the velocity approaching that of the stream as distance from the surface increases.

The no-slip condition is only defined for viscous flows and where the continuum concept is valid.

Slip behaviour

As the no-slip condition was an empirical observation, there are physical scenarios in which it fails. For sufficiently rarefied flows, including flows of high altitude atmospheric gases [4] and for microscale flows, the no-slip condition is inaccurate. [5] For such examples, this change is driven by an increasing Knudsen number, which implies increasing rarefaction, and gradual failure of the continuum approximation. The first-order expression, which is often used to model fluid slip, is expressed as

where is the coordinate normal to the wall, is the mean free path and is some constant known as the slip coefficient, which is approximately of order 1. Alternatively, one may introduce as the slip length. [6] Some highly hydrophobic surfaces, such as carbon nanotubes with added radicals, have also been observed to have a nonzero but nanoscale slip length. [7] Similarly, some researchers have investigated this slip condition, modelling the cause as due to the high smoothness of highly-ordered nanoscale surfaces. [8]

While the no-slip condition is used almost universally in modeling of viscous flows, it is sometimes neglected in favor of the 'no-penetration condition' (where the fluid velocity normal to the wall is set to the wall velocity in this direction, but the fluid velocity parallel to the wall is unrestricted) in elementary analyses of inviscid flow, where the effect of boundary layers is neglected.

The no-slip condition poses a problem in viscous flow theory at contact lines: places where an interface between two fluids meets a solid boundary. Here, the no-slip boundary condition implies that the position of the contact line does not move, which is not observed in reality. Analysis of a moving contact line with the no slip condition results in infinite stresses that can't be integrated over. The rate of movement of the contact line is believed to be dependent on the angle the contact line makes with the solid boundary, but the mechanism behind this is not yet fully understood.

See also

Related Research Articles

<span class="mw-page-title-main">Laminar flow</span> Flow where fluid particles follow smooth paths in layers

Laminar flow is the property of fluid particles in fluid dynamics to follow smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another smoothly. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface. Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Boundary layer</span> Layer of fluid in the immediate vicinity of a bounding surface

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.

In viscous fluid dynamics, the Archimedes number (Ar), is a dimensionless number used to determine the motion of fluids due to density differences, named after the ancient Greek scientist and mathematician Archimedes.

<span class="mw-page-title-main">Shear stress</span> Component of stress coplanar with a material cross section

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

dAlemberts paradox

In fluid dynamics, d'Alembert's paradox is a contradiction reached in 1752 by French mathematician Jean le Rond d'Alembert. d'Alembert proved that – for incompressible and inviscid potential flow – the drag force is zero on a body moving with constant velocity relative to the fluid. Zero drag is in direct contradiction to the observation of substantial drag on bodies moving relative to fluids, such as air and water; especially at high velocities corresponding with high Reynolds numbers. It is a particular example of the reversibility paradox.

Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference via the hydraulic conductivity. In fact, the Darcy's law is a special case of the Stokes equation for the momentum flux, in turn deriving from the momentum Navier-Stokes equation.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object, moving with respect to a surrounding fluid. This can exist between two fluid layers, two solid surfaces, or between a fluid and solid surface. Drag forces tend to decrease fluid velocity relative to the solid object in the fluid's path.

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.

This page describes some of the parameters used to characterize the thickness and shape of boundary layers formed by fluid flowing along a solid surface. The defining characteristic of boundary layer flow is that at the solid walls, the fluid's velocity is reduced to zero. The boundary layer refers to the thin transition layer between the wall and the bulk fluid flow. The boundary layer concept was originally developed by Ludwig Prandtl and is broadly classified into two types, bounded and unbounded. The differentiating property between bounded and unbounded boundary layers is whether the boundary layer is being substantially influenced by more than one wall. Each of the main types has a laminar, transitional, and turbulent sub-type. The two types of boundary layers use similar methods to describe the thickness and shape of the transition region with a couple of exceptions detailed in the Unbounded Boundary Layer Section. The characterizations detailed below consider steady flow but is easily extended to unsteady flow.

<span class="mw-page-title-main">Diffusiophoresis and diffusioosmosis</span>

Diffusiophoresis is the spontaneous motion of colloidal particles or molecules in a fluid, induced by a concentration gradient of a different substance. In other words, it is motion of one species, A, in response to a concentration gradient in another species, B. Typically, A is colloidal particles which are in aqueous solution in which B is a dissolved salt such as sodium chloride, and so the particles of A are much larger than the ions of B. But both A and B could be polymer molecules, and B could be a small molecule. For example, concentration gradients in ethanol solutions in water move 1 μm diameter colloidal particles with diffusiophoretic velocities of order 0.1 to 1 μm/s, the movement is towards regions of the solution with lower ethanol concentration. Both species A and B will typically be diffusing but diffusiophoresis is distinct from simple diffusion: in simple diffusion a species A moves down a gradient in its own concentration.

Hele-Shaw flow is defined as flow taking place between two parallel flat plates separated by a narrow gap satisfying certain conditions, named after Henry Selby Hele-Shaw, who studied the problem in 1898. Various problems in fluid mechanics can be approximated to Hele-Shaw flows and thus the research of these flows is of importance. Approximation to Hele-Shaw flow is specifically important to micro-flows. This is due to manufacturing techniques, which creates shallow planar configurations, and the typically low Reynolds numbers of micro-flows.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Hagen in 1839 and then by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

<span class="mw-page-title-main">Reynolds number</span> Ratio of inertial to viscous forces acting on a liquid

In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer. When the boundary layer expands to fill the entire pipe, the developing flow becomes a fully developed flow, where flow characteristics no longer change with increased distance along the pipe. Many different entrance lengths exist to describe a variety of flow conditions. Hydrodynamic entrance length describes the formation of a velocity profile caused by viscous forces propagating from the pipe wall. Thermal entrance length describes the formation of a temperature profile. Awareness of entrance length may be necessary for the effective placement of instrumentation, such as fluid flow meters.

In fluid dynamics, a stagnation point flow refers to a fluid flow in the neighbourhood of a stagnation point or a stagnation line with which the stagnation point/line refers to a point/line where the velocity is zero in the inviscid approximation. The flow specifically considers a class of stagnation points known as saddle points wherein incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface.

<span class="mw-page-title-main">Stokes problem</span>

In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

In fluid dynamics, Taylor–Culick flow describes the axisymmetric flow inside a long slender cylinder with one end closed, supplied by a constant flow injection through the sidewall. The flow is named after Geoffrey Ingram Taylor and F. E. C. Culick. In 1956, Taylor showed that when a fluid forced into porous sheet of cone or wedge, a favorable longitudinal pressure gradient is set up in the direction of the flow inside the cone or wedge and the flow is rotational; this is in contrast in the vice versa case wherein the fluid is forced out of the cone or wedge sheet from inside in which case, the flow is uniform inside the cone or wedge and is obviously potential. Taylor also obtained solutions for the velocity in the limiting case where the cone or the wedge degenerates into a circular tube or parallel plates. Later in 1966, Culick found the solution corresponding to the tube problem, in problem applied to solid-propellant rocket combustion. Here the thermal expansion of the gas due to combustion occurring at the inner surface of the combustion chamber generates a flow directed towards the axis.

References

  1. Reynolds, Osbourne. (1876). "I. On the force caused by the communication of heat between a surface and a gas, and on a new photometer". Proceedings of the Royal Society of London . 24 (164): 387–391.
  2. Day, Michael A. (2004). "The no-slip condition of fluid dynamics". Erkenntnis . 33 (3): 285–296. doi:10.1007/BF00717588. S2CID   55186899.
  3. Campanella, O. H.; Peleg, M. (1987). "Squeezing Flow Viscosimetry of Peanut Butter". Journal of Food Science. 52: 180–184. doi:10.1111/j.1365-2621.1987.tb14000.x.
  4. Schamberg, R. (1947). The fundamental differential equations and the boundary conditions for high speed slip-flow, and their application to several specific problems (Thesis).
  5. Arkilic, E.B.; Breuer, K.S.; Schmidt, M.A. (2001). "Mass flow and tangential momentum accommodation in silicon micromachined channels". Journal of Fluid Mechanics. 437: 29–43. doi:10.1111/j.1365-2621.1987.tb14000.x.
  6. David L. Morris; Lawrence Hannon; Alejandro L. Garcia (1992). "Slip length in a dilute gas". Physical Review A . 46 (8): 5279–5281. Bibcode:1992PhRvA..46.5279M. doi:10.1103/PhysRevA.46.5279. PMID   9908755.
  7. Kim Kristiansen; Signe Kjelstrup (2021). "Particle flow through a hydrophobic nanopore: Effect of long-ranged wall–fluid repulsion on transport coefficients". Physics of Fluids . 33 (10).
  8. M. Kratzer; S. K. Bhatia; A. Y. Klimenko (2023). "Knudsen layer behaviour and momentum accommodation from surface roughness modelling". Journal of Statistical Physics . 190 (3).