Noradrenergic cell groups

Last updated
Noradrenergic cell groups
Identifiers
NeuroNames 3139
FMA 78543
Anatomical terminology

Noradrenergic cell groups refers to collections of neurons in the central nervous system that have been demonstrated by histochemical fluorescence to contain the neurotransmitter norepinephrine (noradrenalin). [1] They are named

Contents

See also

Related Research Articles

Neurotransmitter Chemical substance that enables neurotransmission

Neurotransmitters are endogenous chemicals acting as signaling molecules that enable neurotransmission. They are a type of chemical messenger which transmits signals across a chemical synapse from one neuron to another 'target' neuron, to a muscle cell, or to a gland cell. Neurotransmitters are released from synaptic vesicles in synapses into the synaptic cleft, where they are received by neurotransmitter receptors on the target cell. Many neurotransmitters are synthesized from simple and plentiful precursors such as amino acids, which are readily available and only require a small number of biosynthetic steps for conversion. Neurotransmitters are essential to the function of complex neural systems. The exact number of unique neurotransmitters in humans is unknown, but more than 200 have been identified.

Catecholamine Class of chemical compounds

A catecholamine is a monoamine neurotransmitter, an organic compound that has a catechol and a side-chain amine.

Monoamine neurotransmitter

Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, serotonin and norepinephrine.

Locus coeruleus Stress & Panic Reponse Center

The locus coeruleus is a nucleus in the pons of the brainstem involved with physiological responses to stress and panic. It is a part of the reticular activating system.

Octopamine group of stereoisomers

Octopamine (molecular formula C8H11NO2; also known as para-octopamines and others) is an organic chemical closely related to norepinephrine, and synthesized biologically by a homologous pathway. Its name derives from the fact that it was first identified in the salivary glands of the octopus.

Habenula a part of the epithalamus in the diencephalon of the chordate animals brain

In neuroanatomy, habenula originally denoted the stalk of the pineal gland, but gradually came to refer to a neighboring group of nerve cells with which the pineal gland was believed to be associated, the habenular nucleus. The habenular nucleus is a set of well-conserved structures in all vertebrate animals.

Norepinephrine Catecholamine hormone and neurotransmitter

Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as a hormone and neurotransmitter. The name "noradrenaline", derived from Latin roots meaning "at/alongside the kidneys", is more commonly used in the United Kingdom; in the United States, "norepinephrine", derived from Greek roots having that same meaning, is usually preferred. "Norepinephrine" is also the international nonproprietary name given to the drug. Regardless of which name is used for the substance itself, parts of the body that produce or are affected by it are referred to as noradrenergic.

Adrenergic cell group C1 is a group of cells that show evidence of phenylethanolamine N-methyltransferase (PNMT), the enzyme that converts norepinephrine to epinephrine (adrenalin); thus, they are regarded as 'putative adrenergic cells'. They are found in the ventrolateral medulla in conjunction with the noradrenergic cell group A1. The adrenergic group C1 is seen in vertebrates, including rodents and primates.

Adrenergic cell group C2 is a group of cells that label for PNMT, the enzyme that converts norepinephrine to epinephrine (adrenalin); thus, they are regarded as 'putative adrenergic cells'. They are found in the dorsomedial medulla in conjunction with the noradrenergic cell group A2. They are seen in vertebrates, including rodents and primates.

Adrenergic cell group C3 is a group of cells that label for Phenylethanolamine N-methyltransferase (PNMT), the enzyme that converts norepinephrine to epinephrine (adrenalin); thus, they are regarded as 'putative adrenergic cells'. They are found in the dorsal midline of the rostral medulla in conjunction with the noradrenergic cell group A3. Seen in rodents, group C3 is not detectable in most other species, including primates.

Noradrenergic cell group A1 is a group of cells in the vicinity of the lateral reticular nucleus of the medullary reticular formation that label for norepinephrine in primates and rodents. They are found in the ventrolateral medulla in conjunction with the adrenergic cell group C1.

Noradrenergic cell group A2 is a group of cells in the vicinity of the dorsal motor nucleus of the vagus nerve in the medulla that label for norepinephrine in primates and rodents.

Noradrenergic cell group A4 is a group of cells exhibiting noradrenergic fluorescence that, in the rat, are located in the Tegmen ventriculi quarti ventral to the cerebellar nuclei, and in the macaque, are found at the edge of the lateral recess of the fourth ventricle caudally, extending to beneath the floor of the ventricle where they merge with the noradrenergic group A6, the locus ceruleus.

Noradrenergic cell group A5 is a group of cells in the vicinity of the superior olivary complex in the pontine tegmentum that label for norepinephine in primates, rodents and other mammals.

Noradrenergic cell group A6sc is a group of cells fluorescent for norepinephrine that are scattered in the nucleus subceruleus of the macaque.,

Adrenergic cell groups refers to collections of neurons in the central nervous system that stain for PNMT, the enzyme that converts norepinephrine to epinephrine (adrenaline). Thus, it is postulated that the neurotransmitter they produce may be epinephrine (adrenaline). Located in the medulla, they are named adrenergic cell group C1, adrenergic cell group C2, and adrenergic cell group C3.

Catecholaminergic cell groups refers to collections of neurons in the central nervous system that have been demonstrated by histochemical fluorescence to contain one of the neurotransmitters dopamine or norepinephrine. Thus, it represents the combination of dopaminergic cell groups and noradrenergic cell groups. Some authors include in this category 'putative' adrenergic cell groups, collections of neurons that stain for PNMT, the enzyme that converts norepinephrine to epinephrine (adrenalin).

Dopaminergic cell groups are collections of neurons in the central nervous system that synthesize the neurotransmitter dopamine. In the 1960s, dopamine neurons were first identified and named by Annica Dahlström and Kjell Fuxe, who used histochemical fluorescence. The subsequent discovery of genes encoding enzymes that synthesize dopamine, and transporters that incorporate dopamine into synaptic vesicles or reclaim it after synaptic release, enabled scientists to identify dopaminergic neurons by labeling gene or protein expression that is specific to these neurons.

Monoaminergic cell groups refers to collections of neurons in the central nervous system that have been demonstrated by histochemical fluorescence to contain one of the neurotransmitters serotonin, dopamine, norepinephrine or epinephrine. Thus, it represents the combination of catecholaminergic cell groups and serotonergic cell groups.

Serotonergic cell groups refer to collections of neurons in the central nervous system that have been demonstrated by histochemical fluorescence to contain the neurotransmitter serotonin (5-hydroxytryptamine). Since they are for the most part localized to classical brainstem nuclei, particularly the raphe nuclei, they are more often referred to by the names of those nuclei than by the B1-9 nomenclature. These cells appear to be common across most mammals and have two main regions in which they develop; one forms in the mesencephlon and the rostral pons and the other in the medulla oblongata and the caudal pons.

References

  1. Fuxe K, Hoekfelt T, Ungerstedt U. "Morphological and functional aspects of central monoamine neurons". International Review of Neurobiology. 13: 93–126. doi:10.1016/S0074-7742(08)60167-1.
  2. Smeets WJAJ, Reiner A (1994). "20:Catecholamines in the CNS of vertebrates: current concepts of evolution and functional significance". In Smeets WJ, Reiner A (eds.). Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates. Cambridge, England: University Press. OCLC   29952121.
  3. German DC, Bowden DM (1975). "Locus ceruleus in rhesus monkey (Macaca mulatta): a combined histochemical fluorescence, Nissl and silver study". J Comp Neurol. 161 (1): 19–29. doi:10.1002/cne.901610104. PMID   48520.
  4. Felten DL, Sladek JR Jr (1983). "Monoamine distribution in primate brain V. Monoaminergic nuclei: anatomy, pathways and local organization". Brain Research Bulletin. 10 (2): 171–284. doi:10.1016/0361-9230(83)90045-x. PMID   6839182.