Normal moveout

Last updated
Seismic data is sorted by common midpoint and then corrected for normal moveout NMO Correction.png
Seismic data is sorted by common midpoint and then corrected for normal moveout

In reflection seismology, normal moveout (NMO) describes the effect that the distance between a seismic source and a receiver (the offset) has on the arrival time of a reflection in the form of an increase of time with offset. [1] The relationship between arrival time and offset is hyperbolic and it is the principal criterion that a geophysicist uses to decide whether an event is a reflection or not. [2] It is distinguished from dip moveout (DMO), the systematic change in arrival time due to a dipping layer.

The normal moveout depends on complex combination of factors including the velocity above the reflector, offset, dip of the reflector and the source receiver azimuth in relation to the dip of the reflector. [3] For a flat, horizontal reflector, the traveltime equation is:

where x = offset; v = velocity of the medium above the reflecting interface; = travel time at zero offset, when the source and receiver are in the same place. [4]

According to W. Harry Mayne, inventor of the Common Point Reflection Method in 1950, in order to avoid the "smearing" of recorded seismic data caused by the use of geophone sensor arrays, I needed a very long array to attenuate the noise, yet each point of the array needed to represent the same reflection point of the subsurface. For a non-dipping reflector, this meant that the source and receiver station would have to move the same distance-in opposite directions-from the reflection (or mid-) point. One problem still remained. The reflections had different traveltimes on each pair of sources and receivers, so it would be necessary to correct for these differences (moveouts) prior to array formation." Coupled with the normal moveout correction, Mayne stated, "the method was primarily intended to attenuate systematic surface noise, and to average out near-surface aberrations in travel paths. It was soon realized, however, that it alone could also substantially attenuate the insidious multiple reflection." [5]

Related Research Articles

Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth with seismic waves produced by earthquakes or explosions. P-, S-, and surface waves can be used for tomographic models of different resolutions based on seismic wavelength, wave source distance, and the seismograph array coverage. The data received at seismometers are used to solve an inverse problem, wherein the locations of reflection and refraction of the wave paths are determined. This solution can be used to create 3D images of velocity anomalies which may be interpreted as structural, thermal, or compositional variations. Geoscientists use these images to better understand core, mantle, and plate tectonic processes.

<span class="mw-page-title-main">Reflection seismology</span> Explore subsurface properties with seismology

Reflection seismology is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflected seismic waves. The method requires a controlled seismic source of energy, such as dynamite or Tovex blast, a specialized air gun or a seismic vibrator. Reflection seismology is similar to sonar and echolocation. This article is about surface seismic surveys; for vertical seismic profiles, see VSP.

<span class="mw-page-title-main">Amplitude versus offset</span>

In geophysics and reflection seismology, amplitude versus offset (AVO) or amplitude variation with offset is the general term for referring to the dependency of the seismic attribute, amplitude, with the distance between the source and receiver. AVO analysis is a technique that geophysicists can execute on seismic data to determine a rock's fluid content, porosity, density or seismic velocity, shear wave information, fluid indicators.

In reflection seismology, stacking velocity, or Normal Moveout (NMO) velocity, is the value of the seismic velocity obtained from the best fit of the traveltime curve by a hyperbola.. The hyperbolic approximation to the traveltime curve is known as Normal moveout (NMO). The procedure of finding the best fit on common midpoint (CMP) seismic gathers is known as NMO velocity analysis.

Seismic anisotropy is a term used in seismology to describe the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth.

<span class="mw-page-title-main">Seismic source</span> Device that generates controlled seismic energy used for seismic surveys

A seismic source is a device that generates controlled seismic energy used to perform both reflection and refraction seismic surveys. A seismic source can be simple, such as dynamite, or it can use more sophisticated technology, such as a specialized air gun. Seismic sources can provide single pulses or continuous sweeps of energy, generating seismic waves, which travel through a medium such as water or layers of rocks. Some of the waves then reflect and refract and are recorded by receivers, such as geophones or hydrophones.

<span class="mw-page-title-main">Zoeppritz equations</span>

In geophysics and reflection seismology, the Zoeppritz equations are a set of equations that describe the partitioning of seismic wave energy at an interface, due to mode conversion. They are named after their author, the German geophysicist Karl Bernhard Zoeppritz, who died before they were published in 1919.

Seismic migration is the process by which seismic events are geometrically re-located in either space or time to the location the event occurred in the subsurface rather than the location that it was recorded at the surface, thereby creating a more accurate image of the subsurface. This process is necessary to overcome the limitations of geophysical methods imposed by areas of complex geology, such as: faults, salt bodies, folding, etc.

Sonic logging is a well logging tool that provides a formation’s interval transit time, designated as , which is a measure of a how fast elastic seismic compressional and shear waves travel through the formations. Geologically, this capacity varies with many things including lithology and rock textures, most notably decreasing with an increasing effective porosity and increasing with an increasing effective confining stress. This means that a sonic log can be used to calculate the porosity, confining stress, or pore pressure of a formation if the seismic velocity of the rock matrix, , and pore fluid, , are known, which is very useful for hydrocarbon exploration.

The plus-minus method, also known as CRM, is a geophysical method to analyze seismic refraction data developed by J. G. Hagedoorn. It can be used to calculate the depth and velocity variations of an undulating layer boundary for slope angles less than ~10°.

In reflection seismology, a seismic attribute is a quantity extracted or derived from seismic data that can be analysed in order to enhance information that might be more subtle in a traditional seismic image, leading to a better geological or geophysical interpretation of the data. Examples of seismic attributes can include measured time, amplitude, frequency and attenuation, in addition to combinations of these. Most seismic attributes are post-stack, but those that use CMP gathers, such as amplitude versus offset (AVO), must be analysed pre-stack. They can be measured along a single seismic trace or across multiple traces within a defined window.

In seismology, first-break picking is the detecting or picking the onset arrivals of refracted signals from all the signals received by receiver arrays and produced by a particular source signal generation. It is also called first arrival picking or first break detection. First-break picking can be done automatically, manually or as a combination of both. With the development of computer science and the size of seismic surveys, automatic picking is often preferred.

<span class="mw-page-title-main">Seismic interferometry</span>

Interferometry examines the general interference phenomena between pairs of signals in order to gain useful information about the subsurface. Seismic interferometry (SI) utilizes the crosscorrelation of signal pairs to reconstruct the impulse response of a given media. Papers by Keiiti Aki (1957), Géza Kunetz, and Jon Claerbout (1968) helped develop the technique for seismic applications and provided the framework upon which modern theory is based.

<span class="mw-page-title-main">Surface wave inversion</span>

Seismic inversion involves the set of methods which seismologists use to infer properties through physical measurements. Surface-wave inversion is the method by which elastic properties, density, and thickness of layers in the subsurface are obtained through analysis of surface-wave dispersion. The entire inversion process requires the gathering of seismic data, the creation of dispersion curves, and finally the inference of subsurface properties.

Semblance analysis is a process used in the refinement and study of seismic data. The use of this technique along with other methods makes it possible to greatly increase the resolution of the data despite the presence of background noise. The new data received following the semblance analysis is usually easier to interpret when trying to deduce the underground structure of an area. Weighted semblance can be used for increasing the resolution of traditional semblance or make traditional semblance capable of analyzing more complicated seismic data.

<span class="mw-page-title-main">Hydrocarbon indicator</span>

A hydrocarbon indicator (HCI) or direct hydrocarbon indicator (DHI), is an anomalous seismic attribute value or pattern that could be explained by the presence of hydrocarbons in an oil or gas reservoir.

A seismic array is a system of linked seismometers arranged in a regular geometric pattern to increase sensitivity to earthquake and explosion detection. A seismic array differs from a local network of seismic stations mainly by the techniques used for data analysis. The data from a seismic array is obtained using special digital signal processing techniques such as beamforming, which suppress noises and thus enhance the signal-to-noise ratio (SNR).

A velocity filter removes interfering signals by exploiting the difference between the travelling velocities of desired seismic waveform and undesired interfering signals.

<span class="mw-page-title-main">Reinhard Bortfeld</span> German geophysicist (1927–2019)

Reinhard Bortfeld was a German geophysicist.

<span class="mw-page-title-main">Seismic data acquisition</span>

Seismic data acquisition is the first of the three distinct stages of seismic exploration, the other two being seismic data processing and seismic interpretation. Seismic acquisition requires the use of a seismic source at specified locations for a seismic survey, and the energy that travels within the subsurface as seismic waves generated by the source gets recorded at specified locations on the surface by what is known as receivers.

References

  1. Schlumberger Oilfield Glossary. NMO.
  2. Sheriff, R. E., Geldart, L. P. (1995). Exploration Seismology (2nd ed.). Cambridge University Press. p. 86. ISBN   0-521-46826-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Yilmaz, Öz (2001). Seismic data analysis. Society of Exploration Geophysicists. p. 274. ISBN   1-56080-094-1.
  4. Green, C.H. (1938). "Velocity determination by means of reflection profiles". Geophysics. Society of Exploration Geophysicists. 3 (4): 295–305. Bibcode:1938Geop....3..295G. doi:10.1190/1.1439508.
  5. Mayne, W. Harry (1989). 50 Years of Geophysical Ideas. Tulsa: Society of Exploration Geophysicists. pp. 93–96. ISBN   0931830737.