Nuclear microreactor

Last updated

A nuclear microreactor is a plug-and-play type of nuclear reactor which can be easily assembled and transported by road, rail or air. [1] Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, and when compared with small modular reactors (SMRs), their capacity is between 1 and 20 megawatts whereas SMRs comes in the range from 20 to 300 megawatts. [2] Due to their size, they can be deployed to locations such as isolated military bases or communities affected by natural disasters. It can operate as part of the grid, independent of the grid, or as part of a small grid for electricity generation and heat treatment. [3] They are designed to provide resilient, non-carbon emitting, and independent power in challenging environments. [4] The nuclear fuel source for the majority of the designs is "High-Assay Low-Enriched Uranium", or HALEU. [5]

Contents

History

Nuclear microreactors originated in the United States Navy's nuclear submarine project, which was first proposed by Ross Gunn of United States Naval Research Laboratory in 1939. [6] The concept was adapted by Admiral Hyman Rickover to start American nuclear submarine program in 1950s. The first US nuclear submarine to be constructed was the USS Nautilus, which was launched in 1955. It was installed with Westinghouse's S2W reactor - a pressurized water type reactor which gave out 10 megawatts output. [7]

Design

These reactors are made to fit in small areas where it would be inefficient to introduce a larger power plant, but still has energy needs unsuitable for generators. Nuclear microreactors, a subcategory of Small Modular Reactors (SMRs), are a developing type of nuclear power plant that is designed to generate electricity on a smaller scale than traditional nuclear reactors. These microreactors typically have a capacity of 20 megawatts or less and are designed to be modular and transportable, making them suitable for powering small communities, remote areas, and industries such as desalinization and hydrogen fuel production. [8]

One of the primary advantages of nuclear microreactors is that they have a lower environmental impact than fossil fuels. They emit no greenhouse gases such as CO2 and methane. The waste they produce is radioactive however, creating an issue of safe handling and disposal. One of the current methods of disposal is burying waste in deep underground storage facilities such as Onkalo, the newest and arguably most durable site located in Finland. [9] In addition, they can operate continuously for up to 10 years without the need for refueling. [10]

Microreactors use nuclear fission to generate heat, which is then used to produce electricity through a steam turbine. The reactor core is surrounded by a thick shield to protect workers and the environment from radiation. The core also contains fuel rods that contain uranium or other fissile materials. As the fuel undergoes fission, it releases energy in the form of heat, which is then transferred to a coolant that circulates through the reactor. The coolant is typically water or a liquid metal, such as sodium or lead, which absorbs the heat and transfers it to a heat exchanger. The heat exchanger then transfers the heat to a secondary coolant, which is used to generate steam and produce electricity. [11]

Microreactors and SMRs reflect a wide range of technologies, including light-water reactors (LWRs), high-temperature gas reactors (HTGRs), and advanced reactor designs, such as liquid metal fast reactors (FRs), molten salt reactors (MSRs) and heat pipe (HP) reactors. Designs can vary based on fuel, materials, refrigerants, inverters, manufacturing techniques (such as additive manufacturing), and heat exchangers. [12]

Heat pipe reactor design is the simplest microreactor, which improves power transfer and avoids the use of pumps to circulate the coolant. Microreactors based on HTGR technology use a three-structure isotropic (TRISO) fuel, the same as that used in larger HTGR designs. For FR technologies that provide compactness and energy efficiency, proven oxide fuels, more experimental metals or nitride fuels are available. The experimental fuel is expected to be more efficient for microreactors, as the residence time of the fuel in the reactor core is much longer than in conventional reactors, leading to higher radiation exposure. [12]

One of the key features of nuclear microreactors is their small size and modularity. SMRs can be built in factories and shipped to their final destination, reducing construction costs and time. They can be installed underground, underwater, or in other remote locations, making them ideal for powering small communities, industrial sites, military installations, and other specialized locations. In addition, the modular design allows for easy scalability, allowing additional microreactors to be added to increase power output as needed. [3]

The environmental impact of reducing greenhouse gases and the capability of outputting low powers of less than 100 MWth have caused global interest in nuclear microreactors, which could potentially benefit companies with lower control necessities. Additional benefits could include expanded adaptability with regard to siting, progressed security execution; diminished development times; and decreased forthright venture necessities. [13]

Challenges

Despite these advantages, nuclear microreactors still face challenges. One of the primary challenges is regulatory approval. SMRs must undergo extensive testing and certification before they can be deployed, and many countries have strict regulations in place to govern the use of SMRs such as those given by the U.S. Nuclear Regulatory Commission (NRC). [14] The most profound issue for microreactors is the cost per kWh, as microreactors lose the power-of-scale advantages for economic efficiency. Design, operation and maintenance costs can make these low-power nuclear reactors prohibitively expensive. [13] Economic analysis shows that despite lower capital costs, microreactors cannot compete in cost with large nuclear power plants due to economies of scale. Still, they can compete with technologies of similar size and application, such as diesel generators in small networks and renewable energies. [3]

In addition, public perception of nuclear energy is often negative, with concerns about safety and nuclear waste disposal. The availability of High Assay Low-Enriched Uranium (HALEU) fuel on the commercial market is low, posing an issue to the viability of operating microreactors even if regulatory approval is attained. Other issues include the higher safety and proliferation risks compared to large nuclear power plants and the licensing requirements for small reactors that have yet to be established. [3] Also, the smaller size of a nuclear microreactor, and its use of HALEU fuels also puts it at increased risk for theft. The uranium in a nuclear microreactor is easier to convert to weapons-grade, which makes it an ideal asset for nuclear terrorism and proliferation. [15]

Current development

Microreactors for civilian use are currently in the earliest stages of development, with individual designs ranging in various stages of maturity. The United States has been supporting the development of any form of small or medium reactors (SMRs) since 2012. The present work focuses on the feasibility of combining coolants commonly considered for fast reactor applications, such as sodium, molten salt, and lead-based coolants, with intermediates and special attention to molten salt, from a basic design perspective. Future work focuses on optimizing the basic design and performing coupled 3D calculations, like thermohydraulics, fuel performance, and neutronics to determine detailed behavior and operation. [13]

As of 2010, there has also been a growing interest in mobile floating nuclear power plants, considered to be nuclear microreactors. Two recent notable examples are: The Russian plant Akademik Lomonosov, which utilizes two 35 MWe reactors, and the Chinese plant ACPR50S, which utilizes a 60 MWe reactor, classified as a marine pressurized water reactor. In addition to the Akademik Lomonosov plant, several new designs of autonomous power sources are being studied in Russia. [13]

In 2018, NASA successfully demonstrated a kilowatt-scale microreactor based on its Kilopower technology. [16] [17] It is being developed for supporting human exploration of the Moon and Mars missions. [18] It uses a unique technological approach to cool down the reactor core (which is about the size of a paper towel roll): airtight heat pipes transfer reactor heat to engines that convert the heat to electricity. [19] The approach to discovering the coolant fuel used for reactor cores was found through a series of scoping calculations, which utilize reactor vessel and internal dimensions, followed by calculating vibrations and hypothetical core-disruptive accidents. [13]

In April 2022, the US Department of Defense announced its approval of Project Pele, an initiative to lower carbon emissions by the DOD by investing in nuclear technologies. The project has a budget of $300 million to develop a miniaturized reactor capable of generating 1.5 megawatts for a minimum of three years. [20] The US Department of Strategic Capabilities partnered with BWXT Technologies in June 2022 to accomplish this. BWXT Tech developed a high-temperature gas-cooled reactor (HTGR) which will generate between 1 and 5 MWe and will be transportable in shipping containers. It will be powered by TRISO fuel, a specific design of high-assay low-enriched uranium (HALEU) fuel that can withstand high temperatures and has relatively low environmental risks. [21]

The US Department of Energy DOE is also currently planning on developing a 100 kWt reactor in Idaho called the "Microreactor Applications Research Validation and Evaluation" (MARVEL) reactor. [22]

The US Department of Defense anticipates deadlines and challenges for the deployment of the first small reactor by the end of 2027. The nominal time from license application to commercialization is estimated at 7 years. [3]

Related Research Articles

<span class="mw-page-title-main">Pebble bed modular reactor</span> South African nuclear reactor design

The Pebble Bed Modular Reactor (PBMR) is a particular design of pebble bed reactor developed by South African company PBMR (Pty) Ltd from 1994 until 2009. PBMR facilities include gas turbine and heat transfer labs at the Potchefstroom Campus of North-West University, and at Pelindaba, a high pressure and temperature helium test rig, as well as a prototype fuel fabrication plant. A planned test reactor at Koeberg Nuclear Power Station was not built.

<span class="mw-page-title-main">Molten salt reactor</span> Type of nuclear reactor cooled by molten material

A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissionable material.

<span class="mw-page-title-main">Supercritical water reactor</span> Concept nuclear reactor whose water operates at supercritical pressure

The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and must not be confused with the concept of criticality of the nuclear reactor.

Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The first commercial Gen IV plants are not expected before 2040–2050, although the World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

<span class="mw-page-title-main">High-temperature gas-cooled reactor</span> Type of nuclear reactor that operates at high temperatures as part of normal operation

A high-temperature gas-cooled reactor (HTGR) is a type of gas-cooled nuclear reactor which use uranium fuel and graphite moderation to produce very high reactor core output temperatures. All existing HTGR reactors use helium coolant. The reactor core can be either a "prismatic block" or a "pebble-bed" core. China Huaneng Group currently operates HTR-PM, a 250 MW HTGR power plant in Shandong province, China.

<span class="mw-page-title-main">Gas-cooled fast reactor</span> Type of nuclear reactor cooled by a gas

The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides. The reference reactor design is a helium-cooled system operating with an outlet temperature of 850 °C (1,560 °F) using a direct Brayton closed-cycle gas turbine for high thermal efficiency. Several fuel forms are being considered for their potential to operate at very high temperatures and to ensure an excellent retention of fission products: composite ceramic fuel, advanced fuel particles, or ceramic clad elements of actinide compounds. Core configurations are being considered based on pin- or plate-based fuel assemblies or prismatic blocks, which allows for better coolant circulation than traditional fuel assemblies.

<span class="mw-page-title-main">Lead-cooled fast reactor</span> Type of nuclear reactor cooled by molten lead

The lead-cooled fast reactor is a nuclear reactor design that features a fast neutron spectrum and molten lead or lead-bismuth eutectic coolant. Molten lead or lead-bismuth eutectic can be used as the primary coolant because especially lead, and to a lesser degree bismuth have low neutron absorption and relatively low melting points. Neutrons are slowed less by interaction with these heavy nuclei and therefore, help make this type of reactor a fast-neutron reactor. In simple terms, if a neutron hits a particle with a similar mass, it tends to lose kinetic energy. In contrast, if it hits a much heavier atom such as lead, the neutron will "bounce off" without losing this energy. The coolant does, however, serve as a neutron reflector, returning some escaping neutrons to the core. Fuel designs being explored for this reactor scheme include fertile uranium as a metal, metal oxide or metal nitride. Smaller capacity lead-cooled fast reactors can be cooled by natural convection, while larger designs use forced circulation in normal power operation, but will employ natural circulation emergency cooling. No operator interference is required, nor pumping of any kind to cool the residual heat of the reactor after shutdown. The reactor outlet coolant temperature is typically in the range of 500 to 600 °C, possibly ranging over 800 °C with advanced materials for later designs. Temperatures higher than 800 °C are theoretically high enough to support thermochemical production of hydrogen through the sulfur-iodine cycle, although this has not been demonstrated.

The Steam Generating Heavy Water Reactor (SGHWR) was a United Kingdom design for commercial nuclear reactors. It uses heavy water as the neutron moderator and normal "light" water as the coolant. The coolant boils in the reactor, like a boiling water reactor, and drives the power-extraction steam turbines.

<span class="mw-page-title-main">Sodium-cooled fast reactor</span> Type of nuclear reactor cooled by molten sodium

A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.

<span class="mw-page-title-main">National Atomic Energy Commission</span> Argentine government agency

The National Atomic Energy Commission is the Argentine government agency in charge of nuclear energy research and development.

<span class="mw-page-title-main">NuScale Power</span> American nuclear technology company

NuScale Power Corporation is a publicly traded American company that designs and markets small modular reactors (SMRs). It is headquartered in Portland, Oregon. A 50 MWe version of the design was certified by the US Nuclear Regulatory Commission (NRC) in January 2023.

<span class="mw-page-title-main">TerraPower</span> Nuclear reactor design company

TerraPower is an American nuclear reactor design and development engineering company headquartered in Bellevue, Washington. TerraPower is developing a class of nuclear fast reactors termed traveling wave reactors (TWR).

<span class="mw-page-title-main">Small modular reactor</span> Small nuclear reactors that can be manufactured off-site and transported

Small modular reactors (SMRs) are a proposed class of nuclear fission reactors, smaller than conventional nuclear reactors, which can be built in one location, then shipped, commissioned, and operated at a separate site. The term SMR refers to the size, capacity and modular construction only, not to the reactor type and the nuclear process which is applied. Designs range from scaled down versions of existing designs to generation IV designs. Both thermal-neutron reactors and fast-neutron reactors have been proposed, along with molten salt and gas cooled reactor models.

The Energy Multiplier Module is a nuclear fission power reactor under development by General Atomics. It is a fast-neutron version of the Gas Turbine Modular Helium Reactor (GT-MHR) and is capable of converting spent nuclear fuel into electricity and industrial process heat.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

<span class="mw-page-title-main">Stable salt reactor</span>

The Stable Salt Reactor (SSR) is a nuclear reactor design under development by Moltex Energy Canada Inc. and its subsidiary Moltex Energy USA LLC, based in Canada, the United States, and the United Kingdom, as well as MoltexFLEX Ltd., based in the United Kingdom.

Terrestrial Energy is a Canadian nuclear technology company working on Generation IV nuclear technology. It expects to produce cost-competitive, high-temperature thermal energy with zero emissions. The company is developing a 190 MWe Integral Molten Salt Reactor design and is conducting its Pre-Licensing Vendor Design Review with the Canadian Nuclear Safety Commission.

The Aurora powerhouse is an advanced fission plant concept design that received a site use permit for testing in 2020 from the United States Department of Energy (DOE). The site use permit, issued in December 2019 is not a Nuclear Regulatory Commission permit. It is the "first and only permit ever issued in the U.S. to a nuclear plant using something other than a light water ("water-cooled") reactor". It will use "recycled" high-assay, low-enriched uranium (HALEU) fuel originally fabricated for the Experimental Breeder Reactor II (EBR-II), and if fully operational, would become "the first fuel-recycling commercial reactor in the United States". The DOE's Idaho National Laboratory (INL) said it would provide 10 tons of HALEU for the test reactor which corresponds to most of the available supply. Reprocessing would occur at INL's Materials and Fuels Complex (MFC) and possibly also the Idaho Nuclear Technology and Engineering Center (INTEC), neither of which are operational facilities as of early 2020.

Project Pele is a project of the US Department of Defense to build a deployable nuclear power reactor for use in United States Armed Forces remote operating bases.

References

  1. "What is a Nuclear Microreactor?". Energy.gov. Retrieved 2020-11-21.
  2. "Microreactors". Idaho National Laboratory . Retrieved 2020-11-21.
  3. 1 2 3 4 5 Testoni, Raffaella; Bersano, Andrea; Segantin, Stefano (2021-08-01). "Review of nuclear microreactors: Status, potentialities and challenges". Progress in Nuclear Energy. 138: 103822. doi: 10.1016/j.pnucene.2021.103822 . ISSN   0149-1970.
  4. Office, U. S. Government Accountability (2020-02-26). "Science & Tech Spotlight: Nuclear Microreactors" (GAO-20-380SP).{{cite journal}}: Cite journal requires |journal= (help)
  5. "What is High-Assay Low-Enriched Uranium (HALEU)?". Office of Nuclear Energy. April 7, 2020. Retrieved 2022-04-26.
  6. "The Little Book of Big Achievements" (PDF). United States Naval Research Laboratory. 2000. Archived from the original (PDF) on 2013-05-10.
  7. "Nautilus: The First Nuclear Submarine". large.stanford.edu. Retrieved 2020-11-21.
  8. "Microreactors". INL. Retrieved 2023-04-30.
  9. "Posiva - Repository in ONKALO". www.posiva.fi. Retrieved 2023-04-30.
  10. "What is a Nuclear Microreactor?". Energy.gov. Retrieved 2023-04-30.
  11. "Microreactor AGile Non-Nuclear Experimental Testbed (MAGNET)". INL. Retrieved 2023-04-30.
  12. 1 2 Black, G.; Shropshire, D.; Araújo, K.; van Heek, A. (2023-01-31). "Prospects for Nuclear Microreactors: A Review of the Technology, Economics, and Regulatory Considerations". Nuclear Technology. 209 (sup1): S1–S20. Bibcode:2023NucTe.209S...1B. doi: 10.1080/00295450.2022.2118626 . ISSN   0029-5450. S2CID   252613488.
  13. 1 2 3 4 5 Peakman, Aiden; Hodgson, Zara; Merk, Bruno (2018-08-01). "Advanced micro-reactor concepts". Progress in Nuclear Energy. 107: 61–70. doi:10.1016/j.pnucene.2018.02.025. ISSN   0149-1970. S2CID   125222876.
  14. "Federal Register, Volume 59 Issue 27 (Wednesday, February 9, 1994)". www.govinfo.gov. Retrieved 2023-04-30.
  15. https://www.gao.gov/assets/gao-20-380sp.pdf
  16. "NASA TechPort - Project Data". techport.nasa.gov. Retrieved 2020-11-21.
  17. Potter, Sean (2018-05-02). "Demonstration Proves Nuclear Fission Can Provide Exploration Power". NASA. Retrieved 2020-11-21.
  18. "NASA Technical Reports Server (NTRS)". ntrs.nasa.gov. 4 March 2017. Retrieved 2020-11-21.
  19. "Tiny Nuclear Reactors Could Transform Power Generation for Remote Communities and Military Sites… and Missions to Mars". EPRI Journal. 2019-06-20. Retrieved 2020-11-21.
  20. "DoD to Build Project Pele Mobile Microreactor and Perform Demonstration at Idaho National". U.S. Department of Defense. Retrieved 2023-04-30.
  21. "BWX Technologies, Inc. | People Strong, Innovation Driven". www.bwxt.com. Retrieved 2023-04-30.
  22. "Small nuclear power reactors - World Nuclear Association".