Nunatak hypothesis

Last updated

In biogeography, particularly phytogeography, the nunatak hypothesis about the origin of a biota in formerly glaciated areas is the idea that some or many species have survived the inhospitable period on icefree land such as nunataks. [1] Its antithesis is the tabula rasa hypothesis , which posits that all species have immigrated into completely denuded land after the retreat of glaciers. [2]

By the mid-20th Century, the nunatak hypothesis was widely accepted among biologists working on the floras of Greenland and Scandinavia. [3] However, while modern geology has established the presence of ice-free areas during the last glacial maximum in both Greenland and Scandinavia, molecular techniques have revealed limited between-region genetic differentiation in many Arctic taxa, strongly suggesting a general capacity for long-distance dispersal among polar organisms. [4] This does not directly disprove glacial survival. But it makes it less necessary as an explanation. Moreover, populations that survived on icefree land have probably in most cases been genetically flooded by postglacial immigrants.

Related Research Articles

<i>Tabula rasa</i> Philosophical theory that individuals are born without innate knowledge

Tabula rasa is the idea of individuals being born empty of any built-in mental content, so that all knowledge comes from later perceptions or sensory experiences. This idea is the central view posited in the theory of knowledge known as empiricism. Empiricists disagree with the doctrine of innatism or rationalism, which holds that the mind is born already in possession of certain knowledge. Proponents of the tabula rasa theory also favour the "nurture" side of the nature versus nurture debate when it comes to aspects of one's personality, social and emotional behaviour, knowledge, and sapience.

<span class="mw-page-title-main">Wallace Line</span> Line separating Asian and Australian fauna

The Wallace line or Wallace's line is a faunal boundary line drawn in 1859 by the British naturalist Alfred Russel Wallace and named by the English biologist T.H. Huxley that separates the biogeographical realms of Asia and 'Wallacea', a transitional zone between Asia and Australia also called the Malay Archipelago and the Indo-Australian Archipelago. To the west of the line are found organisms related to Asiatic species; to the east, a mixture of species of Asian and Australian origins is present. Wallace noticed this clear division in both land mammals and birds during his travels through the East Indies in the 19th century.

<span class="mw-page-title-main">Genetic variation</span> Difference in DNA among individuals or populations

Genetic variation is the difference in DNA among individuals or the differences between populations among the same species. The multiple sources of genetic variation include mutation and genetic recombination. Mutations are the ultimate sources of genetic variation, but other mechanisms, such as genetic drift, contribute to it, as well.

<span class="mw-page-title-main">Genetic diversity</span> Total number of genetic characteristics in a species

Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is distinguished from genetic variability, which describes the tendency of genetic characteristics to vary.

<span class="mw-page-title-main">Evolutionary biology</span> Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution holds that all species are related and gradually change over generations. In a population, the genetic variations affect the phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring. Some examples of evolution in species over many generations are the peppered moth and flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology.

<span class="mw-page-title-main">Sundaland</span> Biogeographic region of Southeast Asia

Sundaland is a biogeographical region of South-eastern Asia corresponding to a larger landmass that was exposed throughout the last 2.6 million years during periods when sea levels were lower. It includes Bali, Borneo, Java, and Sumatra in Indonesia, and their surrounding small islands, as well as the Malay Peninsula on the Asian mainland.

<span class="mw-page-title-main">Alfred Gabriel Nathorst</span> Swedish explorer, geologist, and paleobotanist (1850–1921)

Alfred Gabriel Nathorst was a Swedish Arctic explorer, geologist, and palaeobotanist.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Glacial landform</span> Landform created by the action of glaciers

Glacial landforms are landforms created by the action of glaciers. Most of today's glacial landforms were created by the movement of large ice sheets during the Quaternary glaciations. Some areas, like Fennoscandia and the southern Andes, have extensive occurrences of glacial landforms; other areas, such as the Sahara, display rare and very old fossil glacial landforms.

<span class="mw-page-title-main">Seed dispersal</span> Movement or transport of seeds away from the parent plant

In spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, such as the wind, and living (biotic) vectors such as birds. Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. These modes are typically inferred based on adaptations, such as wings or fleshy fruit. However, this simplified view may ignore complexity in dispersal. Plants can disperse via modes without possessing the typical associated adaptations and plant traits may be multifunctional.

<span class="mw-page-title-main">Holarctic realm</span> Biogeographic realm

The Holarctic realm is a biogeographic realm that comprises the majority of habitats found throughout the continents in the Northern Hemisphere. It corresponds to the floristic Boreal Kingdom. It includes both the Nearctic zoogeographical region, and Alfred Wallace's Palearctic zoogeographical region.

The Red Queen hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction at the level of individuals, and the positive correlation between speciation and extinction rates in most higher taxa.

<i>The Theory of Island Biogeography</i> 1967 book by Robert MacArthur and Edward O. Wilson

The Theory of Island Biogeography is a 1967 book by the ecologist Robert MacArthur and the biologist Edward O. Wilson. It is widely regarded as a seminal piece in island biogeography and ecology. The Princeton University Press reprinted the book in 2001 as a part of the "Princeton Landmarks in Biology" series. The book popularized the theory that insular biota maintain a dynamic equilibrium between immigration and extinction rates. The book also popularized the concepts and terminology of r/K selection theory.

Tropical ecology is the study of the relationships between the biotic and abiotic components of the tropics, or the area of the Earth that lies between the Tropic of Cancer and the Tropic of Capricorn. The tropical climate experiences hot, humid weather and rainfall year-round. While many might associate the region solely with the rainforests, the tropics are home to a wide variety of ecosystems that boast a great wealth of biodiversity, from exotic animal species to seldom-found flora. Tropical ecology began with the work of early English naturalists and eventually saw the establishment of research stations throughout the tropics devoted to exploring and documenting these exotic landscapes. The burgeoning ecological study of the tropics has led to increased conservation education and programs devoted to the climate.

Forest migration is the movement of large seed plant dominated communities in geographical space over time.

The northern and southern hemispheres of the earth have a dynamic history of advancing and retreating ice sheets. The glacial and interglacial periods are linked to regular eccentricities in the Earth’s orbit and correspond to approximately 100 kyr cycles. The advancing, or glacial periods can cause a massive displacement of flora and fauna as it drives them away from the poles, with the most recent glacial maximum having occurred about 20,000 years ago.,

A glacial refugium is a geographic region which made possible the survival of flora and fauna in times of ice ages and allowed for post-glacial re-colonization. Different types of glacial refugia can be distinguished, namely nunatak, peripheral and lowland refugia. Glacial refugia have been suggested as a major cause of the patterns of distributions of flora and fauna in both temperate and tropical latitudes. With respect to disjunct populations of modern-day species distributions, especially in birds, doubt has been cast on the validity of such inferences, as much of the differentiation between populations observed today may have occurred before or after their restriction to refugia. In contrast, isolated geographic locales that host one or more critically endangered species are generally uncontested as bona fide glacial refugia.

<span class="mw-page-title-main">Glacial survival hypothesis</span>

According to the northern cryptic glacial refugial hypothesis, during the last ice age cold tolerant plant and animal species persisted in ice-free microrefugia north of the Alps in Europe. The alternative hypothesis of no persistence and postglacial immigration of plants and animals from southern refugia in Europe is sometimes also called the tabula rasa hypothesis.

A glacial relict is a population of a cold-adapted species that has been left behind as the range of the species changed after an ice age ended. Glacial relicts are usually found in enclaves "under relatively benign conditions".

Reid's Paradox of Rapid Plant Migration or Reid's Paradox, describes the observation from the paleoecological record that plant ranges shifted northward, after the last glacial maximum, at a faster rate than the seed dispersal rates commonly occur. Rare long-distance seed dispersal events have been hypothesized to explain these fast migration rates, but the dispersal vector(s) are still unknown. The plant species' geographic range expansion rates are compared to the actualistic rates of seed dispersal using mathematical models, and are graphically visualized using dispersal kernels. These observations made in the paleontological record, which inspired Reid's Paradox, are from fossilized remains of plant parts, including needles, leaves, pollen, and seeds, that can be used to identify past shifts in plant species' ranges.

References

  1. Dahl, Eilif (1987). "The Nunatak Theory Reconsidered". Ecological Bulletins (38): 77–94. ISSN   0346-6868. JSTOR   20112974.
  2. Segarra-Moragues, José Gabriel; Palop-Esteban, Marisa; González-Candelas, Fernando; Catalán, Pilar (2007). "Nunatak Survival vs. tabula rasa in the Central Pyrenees: A Study on the Endemic Plant Species Borderea pyrenaica (Dioscoreaceae)". Journal of Biogeography. 34 (11): 1893–1906. doi:10.1111/j.1365-2699.2007.01740.x. ISSN   0305-0270. JSTOR   4640655. S2CID   84256685.
  3. Ægisdóttir, Hafdís Hanna; Þórhallsdóttir, Þóra Ellen (2004). "Theories on migration and history of the North-Atlantic flora: A review". Jökull: The Icelandic Journal of Earth Sciences (54): 1–15. ISSN   0449-0576 . Retrieved 2020-08-28 via ResearchGate.
  4. Birks, H. J. B. (1993-12-15). "Is the hypothesis of survival on glacial nunataks necessary to explain the present-day distributions of Norwegian mountain plants?". Phytocoenologia. 23 (1–4): 399–426. doi:10.1127/phyto/23/1993/399.