OLR1

Last updated
OLR1
Protein OLR1 PDB 1ypo.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases OLR1 , CLEC8A, LOX1, LOXIN, SCARE1, SLOX1, oxidized low density lipoprotein receptor 1
External IDs OMIM: 602601 MGI: 1261434 HomoloGene: 1910 GeneCards: OLR1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001172632
NM_001172633
NM_002543

NM_001301094
NM_001301096
NM_138648

RefSeq (protein)

NP_001166103
NP_001166104
NP_002534

NP_001288023
NP_001288025
NP_619589

Location (UCSC) Chr 12: 10.16 – 10.17 Mb Chr 6: 129.46 – 129.48 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Oxidized low-density lipoprotein receptor 1 (Ox-LDL receptor 1) also known as lectin-type oxidized LDL receptor 1 (LOX-1) is a protein that in humans is encoded by the OLR1 gene. [5] [6]

Contents

LOX-1 is the main receptor for oxidized LDL on endothelial cells, macrophages, smooth muscle cells, [7] and other cell types. [8] But minimally oxidized LDL is more readily recognized by the TLR4 receptor, and highly oxidized LDL is more readily recognized by the CD36 receptor. [9]

Function

LOX-1 is a receptor protein which belongs to the C-type lectin superfamily. Its gene is regulated through the cyclic AMP signaling pathway. The protein binds, internalizes and degrades oxidized low-density lipoprotein.[ citation needed ]

Normally, LOX-1 expression on endothelial cells is low, but tumor necrosis factor alpha, oxidized LDL, blood vessel shear stress, and other atherosclerotic stimuli substantially increase LOX-1 expression. [8] [10]

LOX-1 may be involved in the regulation of Fas-induced apoptosis. Oxidized LDL induces endothelial cell apoptosis through LOX-1 binding. [7] Other ligands for LOX-1 include oxidized high-density lipoprotein, advanced glycation end-products, platelets, and apoptotic cells. [7] [10] The binding of platelets to LOX-1 causes a release of vasoconstrictive endothelin, which induces endothelial dysfunction. [10]

This protein may play a role as a scavenger receptor. [6]

Clinical significance

Binding of oxidized LDL to LOX-1 activates NF-κB, leading to monocyte adhesion to enthothelial cells (a pre-requisite for the macrophage foam cell formation of atherosclerosis). [8] Macrophage affinity for unmodified LDL particles is low, but is greatly increased when the LDL particles are oxidized. [11] LDL oxidation occurs in the sub-endothelial space, rather than in the circulation. [11] But oxidized cholesterol from foods cooked at high temperature can also be a source of oxysterols. [9]

Mutations of the OLR1 gene have been associated with atherosclerosis, risk of myocardial infarction, and may modify the risk of Alzheimer's disease. [6] When applied to human macrophage-derived foam cells in vitro, the dietary supplement berberine inhibits the expression of the ORL1 gene in response to oxidized low-density lipoprotein cholesterol, [12] but this has not yet been demonstrated in a living animal or human.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Low-density lipoprotein</span> One of the five major groups of lipoprotein

Low-density lipoprotein (LDL) is one of the five major groups of lipoprotein that transport all fat molecules around the body in extracellular water. These groups, from least dense to most dense, are chylomicrons, very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL). LDL delivers fat molecules to cells. LDL is involved in atherosclerosis, a process in which it is oxidized within the walls of arteries.

<span class="mw-page-title-main">Atherosclerosis</span> Form of arteriosclerosis

Atherosclerosis is a pattern of the disease arteriosclerosis, characterized by development of abnormalities called lesions in walls of arteries. These lesions may lead to narrowing of the arteries' walls due to buildup of atheromatous plaques. At onset there are usually no symptoms, but if they develop, symptoms generally begin around middle age. In severe cases, it can result in coronary artery disease, stroke, peripheral artery disease, or kidney disorders, depending on which body parts(s) the affected arteries are located in the body.

<span class="mw-page-title-main">CD36</span> Mammalian protein found in Homo sapiens

CD36, also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene. The CD36 antigen is an integral membrane protein found on the surface of many cell types in vertebrate animals. It imports fatty acids inside cells and is a member of the class B scavenger receptor family of cell surface proteins. CD36 binds many ligands including collagen, thrombospondin, erythrocytes parasitized with Plasmodium falciparum, oxidized low density lipoprotein, native lipoproteins, oxidized phospholipids, and long-chain fatty acids.

<span class="mw-page-title-main">Lipoprotein lipase</span> Mammalian protein found in Homo sapiens

Lipoprotein lipase (LPL) (EC 3.1.1.34, systematic name triacylglycerol acylhydrolase (lipoprotein-dependent)) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule:

Scavenger receptors are a large and diverse superfamily of cell surface receptors. Its properties were first recorded in 1970 by Drs. Brown and Goldstein, with the defining property being the ability to bind and remove modified low density lipoproteins (LDL). Today scavenger receptors are known to be involved in a wide range of processes, such as: homeostasis, apoptosis, inflammatory diseases and pathogen clearance. Scavenger receptors are mainly found on myeloid cells and other cells that bind to numerous ligands, primarily endogenous and modified host-molecules together with pathogen-associated molecular patterns(PAMPs), and remove them. The Kupffer cells in the liver are particularly rich in scavenger receptors, includes SR-A I, SR-A II, and MARCO.

<span class="mw-page-title-main">LDL receptor</span> Mammalian protein found in Homo sapiens

The low-density lipoprotein receptor (LDL-R) is a mosaic protein of 839 amino acids that mediates the endocytosis of cholesterol-rich low-density lipoprotein (LDL). It is a cell-surface receptor that recognizes apolipoprotein B100 (ApoB100), which is embedded in the outer phospholipid layer of very low-density lipoprotein (VLDL), their remnants—i.e. intermediate-density lipoprotein (IDL), and LDL particles. The receptor also recognizes apolipoprotein E (ApoE) which is found in chylomicron remnants and IDL. In humans, the LDL receptor protein is encoded by the LDLR gene on chromosome 19. It belongs to the low density lipoprotein receptor gene family. It is most significantly expressed in bronchial epithelial cells and adrenal gland and cortex tissue.

<span class="mw-page-title-main">Endothelin</span>

Endothelins are peptides with receptors and effects in many body organs. Endothelin constricts blood vessels and raises blood pressure. The endothelins are normally kept in balance by other mechanisms, but when overexpressed, they contribute to high blood pressure (hypertension), heart disease, and potentially other diseases.

<span class="mw-page-title-main">VLDL receptor</span> Protein-coding gene in the species Homo sapiens

The very-low-density-lipoprotein receptor (VLDLR) is a transmembrane lipoprotein receptor of the low-density-lipoprotein (LDL) receptor family. VLDLR shows considerable homology with the members of this lineage. Discovered in 1992 by T. Yamamoto, VLDLR is widely distributed throughout the tissues of the body, including the heart, skeletal muscle, adipose tissue, and the brain, but is absent from the liver. This receptor has an important role in cholesterol uptake, metabolism of apolipoprotein E-containing triacylglycerol-rich lipoproteins, and neuronal migration in the developing brain. In humans, VLDLR is encoded by the VLDLR gene. Mutations of this gene may lead to a variety of symptoms and diseases, which include type I lissencephaly, cerebellar hypoplasia, and atherosclerosis.

<span class="mw-page-title-main">Foam cell</span> Fat-laden M2 macrophages seen in atherosclerosis

Foam cells, also called lipid-laden macrophages, are a type of cell that contain cholesterol. These can form a plaque that can lead to atherosclerosis and trigger myocardial infarction and stroke.

<span class="mw-page-title-main">Hepatic lipase</span> Mammalian protein found in Homo sapiens

Hepatic lipase (HL), also called hepatic triglyceride lipase (HTGL) or LIPC (for "lipase, hepatic"), is a form of lipase, catalyzing the hydrolysis of triacylglyceride. Hepatic lipase is coded by chromosome 15 and its gene is also often referred to as HTGL or LIPC. Hepatic lipase is expressed mainly in liver cells, known as hepatocytes, and endothelial cells of the liver. The hepatic lipase can either remain attached to the liver or can unbind from the liver endothelial cells and is free to enter the body's circulation system. When bound on the endothelial cells of the liver, it is often found bound to heparan sulfate proteoglycans (HSPG), keeping HL inactive and unable to bind to HDL (high-density lipoprotein) or IDL (intermediate-density lipoprotein). When it is free in the bloodstream, however, it is found associated with HDL to maintain it inactive. This is because the triacylglycerides in HDL serve as a substrate, but the lipoprotein contains proteins around the triacylglycerides that can prevent the triacylglycerides from being broken down by HL.

Endothelial lipase (LIPG) is a form of lipase secreted by vascular endothelial cells in tissues with high metabolic rates and vascularization, such as the liver, lung, kidney, and thyroid gland. The LIPG enzyme is a vital component to many biological processes. These processes include lipoprotein metabolism, cytokine expression, and lipid composition in cells. Unlike the lipases that hydrolyze Triglycerides, endothelial lipase primarily hydrolyzes phospholipids. Due to the hydrolysis specificity, endothelial lipase contributes to multiple vital systems within the body. On the contrary to the beneficial roles that LIPG plays within the body, endothelial lipase is thought to play a potential role in cancer and inflammation. Knowledge obtained in vitro and in vivo suggest the relations to these conditions, but human interaction knowledge lacks due to the recent discovery of endothelial lipase. Endothelial lipase was first characterized in 1999. The two independent research groups which are notable for this discovery cloned the endothelial lipase gene and identified the novel lipase secreted from endothelial cells. The anti-Atherosclerosis opportunity through alleviating plaque blockage and prospective ability to raise High-density lipoprotein (HDL) have gained endothelial lipase recognition.

<span class="mw-page-title-main">LRP1</span> Mammalian protein found in Homo sapiens

Low density lipoprotein receptor-related protein 1 (LRP1), also known as alpha-2-macroglobulin receptor (A2MR), apolipoprotein E receptor (APOER) or cluster of differentiation 91 (CD91), is a protein forming a receptor found in the plasma membrane of cells involved in receptor-mediated endocytosis. In humans, the LRP1 protein is encoded by the LRP1 gene. LRP1 is also a key signalling protein and, thus, involved in various biological processes, such as lipoprotein metabolism and cell motility, and diseases, such as neurodegenerative diseases, atherosclerosis, and cancer.

<span class="mw-page-title-main">PCSK9</span> Mammalian protein found in humans

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme encoded by the PCSK9 gene in humans on chromosome 1. It is the 9th member of the proprotein convertase family of proteins that activate other proteins. Similar genes (orthologs) are found across many species. As with many proteins, PCSK9 is inactive when first synthesized, because a section of peptide chains blocks their activity; proprotein convertases remove that section to activate the enzyme. The PCSK9 gene also contains one of 27 loci associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">MSR1</span> Protein-coding gene in the species Homo sapiens

Macrophage scavenger receptor 1, also known as MSR1, is a protein which in humans is encoded by the MSR1 gene. MSR1 has also been designated CD204.

<span class="mw-page-title-main">STAB1</span> Protein-coding gene in the species Homo sapiens

Stabilin-1 is a protein that in humans is encoded by the STAB1 gene.

<span class="mw-page-title-main">LRP1B</span> Protein-coding gene in the species Homo sapiens

Low-density lipoprotein receptor-related protein 1B is a protein that in humans is encoded by the LRP1B gene.

<span class="mw-page-title-main">Lipoprotein-associated phospholipase A2</span> Protein-coding gene in the species Homo sapiens

Lipoprotein-associated phospholipase A2 (Lp-PLA2) also known as platelet-activating factor acetylhydrolase (PAF-AH) is a phospholipase A2 enzyme that in humans is encoded by the PLA2G7 gene. Lp-PLA2 is a 45-kDa protein of 441 amino acids. It is one of several PAF acetylhydrolases.

The chronic endothelial injury hypothesis is one of two major mechanisms postulated to explain the underlying cause of atherosclerosis and coronary heart disease (CHD), the other being the lipid hypothesis. Although an ongoing debate involving connection between dietary lipids and CHD sometimes portrays the two hypotheses as being opposed, they are in no way mutually exclusive. Moreover, since the discovery of the role of LDL cholesterol (LDL-C) in the pathogenesis of atherosclerosis, the two hypotheses have become tightly linked by a number of molecular and cellular processes.

<span class="mw-page-title-main">Jawahar L. Mehta</span> American doctor and academic

Jawahar L. Mehta is the Stebbins Chair and Professor of Medicine at the College of Medicine, University of Arkansas for Medical Sciences (UAMS).

Liver sinusoidal endothelial cells (LSECs) form the lining of the smallest blood vessels in the liver, also called the hepatic sinusoids. LSECs are highly specialized endothelial cells with characteristic morphology and function. They constitute an important part of the reticuloendothelial system (RES).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000173391 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030162 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Li X, Bouzyk MM, Wang X (Nov 1998). "Assignment of the human oxidized low-density lipoprotein receptor gene (OLR1) to chromosome 12p13.1→p12.3, and identification of a polymorphic CA-repeat marker in the OLR1 gene". Cytogenet Cell Genet. 82 (1–2): 34–6. doi:10.1159/000015059. PMID   9763655. S2CID   46772688.
  6. 1 2 3 "Entrez Gene: OLR1 oxidized low density lipoprotein (lectin-like) receptor 1".
  7. 1 2 3 Pirillo A, Norata GD, Catapano AL (2013). "LOX-1, OxLDL, and atherosclerosis". Mediators of Inflammation. 2013: 1–12. doi: 10.1155/2013/152786 . PMC   3723318 . PMID   23935243.
  8. 1 2 3 Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P (2013). "LOX-1 in atherosclerosis: biological functions and pharmacological modifiers". Cellular and Molecular Life Sciences . 70 (16): 2859–2872. doi:10.1007/s00018-012-1194-z. PMC   4142049 . PMID   23124189.
  9. 1 2 Zmysłowski A, Szterk A (2017). "Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols". Lipids in Health and Disease. 16 (1): 188. doi: 10.1186/s12944-017-0579-2 . PMC   5625595 . PMID   28969682.
  10. 1 2 3 Kakutani M, Masaki T, Sawamura T (2000). "A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1". Proceedings of the National Academy of Sciences of the United States of America . 97 (1): 360–364. Bibcode:2000PNAS...97..360K. doi:10.1016/j.biochi.2016.10.010. PMC   26668 . PMID   10618423.
  11. 1 2 Brites F, Martin M, Guillas I, Kontush A (2017). "Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit". BBA Clinical . 8: 66–77. doi:10.1016/j.bbacli.2017.07.002. PMC   5597817 . PMID   28936395.
  12. Guan S, Wang B, Li W, Guan J, Fang X (2010). "Effects of berberine on expression of LOX-1 and SR-BI in human macrophage-derived foam cells induced by ox-LDL". Am J Chin Med. 38 (6): 1161–9. doi:10.1142/s0192415x10008548. PMID   21061468.

Further reading