OmpA-like transmembrane domain

Last updated
OmpA-like transmembrane domain
1qjp opm.png
Identifiers
SymbolOmpA_membrane
Pfam PF01389
Pfam clan CL0193
InterPro IPR000498
PROSITE PDOC00819
SCOP2 1bxw / SCOPe / SUPFAM
TCDB 1.B.6
OPM superfamily 26
OPM protein 1qjp
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1g90 A:22-195 1bxw A:22-192 1qjp A:22-192

OmpA-like transmembrane domain is an evolutionarily conserved domain of bacterial outer membrane proteins. This domain consists of an eight-stranded beta barrel. [1] OmpA is the predominant cell surface antigen in enterobacteria found in about 100,000 copies per cell. [2] The expression of OmpA is tightly regulated by a variety of mechanisms. One mechanism by which OmpA expression is regulated in Vibrio species is by an antisense non-coding RNA called VrrA. [3]

Contents

Structure

The structure consists of an eight-stranded Up-And-Down Beta-Barrel. The strands are connected by four extracellular loops and three intracellular turns. [4]

Function

Numerous OmpA-like membrane-spanning domains contribute to bacterial virulence by a variety of mechanisms such as binding to host cells or immune regulators such as Factor H. Notable examples include E. coli OmpA and Yersinia pestis Ail. Several of these proteins are vaccine candidates.

E. coli OmpA was shown to make specific interactions with the human glycoprotein Ecgp on brain microvascular endothelial cells. [5] Cronobacter sakazakii is a food borne pathogen causing meningitis in neonates and was shown to bind fibronectin via OmpA and this played a significant role in invasion of the blood brain barrier. [6] The Y. pestis protein Ail binds to laminin and heparin, therefore allowing bacterial attachment to host cells. [7] The Borrelia afzelii protein BAPKO_0422, is an OmpA-like transmembrane domain and binds to human Factor H. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Secretion</span> Controlled release of substances by cells or tissues

Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell or gland. In contrast, excretion is the removal of certain substances or waste products from a cell or organism. The classical mechanism of cell secretion is via secretory portals at the plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structures embedded in the cell membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.

Braun's lipoprotein, found in some gram-negative cell walls, is one of the most abundant membrane proteins; its molecular weight is about 7.2 kDa. It is bound at its C-terminal end by a covalent bond to the peptidoglycan layer and is embedded in the outer membrane by its hydrophobic head. BLP tightly links the two layers and provides structural integrity to the outer membrane.

<i>Yersinia pseudotuberculosis</i> Species of bacterium

Yersinia pseudotuberculosis is a Gram-negative bacterium that causes Far East scarlet-like fever in humans, who occasionally get infected zoonotically, most often through the food-borne route. Animals are also infected by Y. pseudotuberculosis. The bacterium is urease positive.

Bacterial display is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iterative selection procedures (biopanning). This protein engineering technique allows us to link the function of a protein with the gene that encodes it. Bacterial display can be used to find target proteins with desired properties and can be used to make affinity ligands which are cell-specific. This system can be used in many applications including the creation of novel vaccines, the identification of enzyme substrates and finding the affinity of a ligand for its target protein.

Virulence factors are cellular structures, molecules and regulatory systems that enable microbial pathogens to achieve the following:

<span class="mw-page-title-main">Colicin</span> Type of bacteriocin produced by and toxic to some strains of Escherichia coli

A colicin is a type of bacteriocin produced by and toxic to some strains of Escherichia coli. Colicins are released into the environment to reduce competition from other bacterial strains. Colicins bind to outer membrane receptors, using them to translocate to the cytoplasm or cytoplasmic membrane, where they exert their cytotoxic effect, including depolarisation of the cytoplasmic membrane, DNase activity, RNase activity, or inhibition of murein synthesis.

<span class="mw-page-title-main">OmrA-B RNA</span>

The OmrA-B RNA gene family is a pair of homologous OmpR-regulated small non-coding RNA that was discovered in E. coli during two large-scale screens. OmrA-B is highly abundant in stationary phase, but low levels could be detected in exponentially growing cells as well. RygB is adjacent to RygA a closely related RNA. These RNAs bind to the Hfq protein and regulate gene expression by antisense binding. They negatively regulate the expression of several genes encoding outer membrane proteins, including cirA, CsgD, fecA, fepA and ompT by binding in the vicinity of the Shine-Dalgarno sequence, suggesting the control of these targets is dependent on Hfq protein and RNase E. Taken together, these data suggest that OmrA-B participates in the regulation of outer membrane composition, responding to environmental conditions.

<span class="mw-page-title-main">MicF RNA</span> Gene found in bacteria

The micF RNA is a non-coding RNA stress response gene found in Escherichia coli and related bacteria that post-transcriptionally controls expression of the outer membrane porin gene ompF. The micF gene encodes a non-translated 93 nucleotide antisense RNA that binds its target ompF mRNA and regulates ompF expression by inhibiting translation and inducing degradation of the message. In addition, other factors, such as the RNA chaperone protein StpA also play a role in this regulatory system. The expression of micF is controlled by both environmental and internal stress factors. Four transcriptional regulators are known to bind the micF promoter region and activate micF expression.

<span class="mw-page-title-main">General bacterial porin family</span> Class of transmembrane transport proteins

General bacterial porins are a family of porin proteins from the outer membranes of Gram-negative bacteria. The porins act as molecular filters for hydrophilic compounds. They are responsible for the 'molecular sieve' properties of the outer membrane. Porins form large water-filled channels which allow the diffusion of hydrophilic molecules into the periplasmic space. Some porins form general diffusion channels that allow any solute up to a certain size to cross the membrane, while other porins are specific for one particular solute and contain a binding site for that solute inside the pores. As porins are the major outer membrane proteins, they also serve as receptor sites for the binding of phages and bacteriocins.

<span class="mw-page-title-main">Virulence-related outer membrane protein family</span>

Virulence-related outer membrane proteins, or outer surface proteins (Osp) in some contexts, are expressed in the outer membrane of gram-negative bacteria and are essential to bacterial survival within macrophages and for eukaryotic cell invasion.

<span class="mw-page-title-main">Vibrio regulatory RNA of OmpA</span>

VrrA is a non-coding RNA that is conserved across all Vibrio species of bacteria and acts as a repressor for the synthesis of the outer membrane protein OmpA. This non-coding RNA was initially identified from Tn5 transposon mutant libraries of Vibrio cholerae and its location within the bacterial genome was mapped to the intergenic region between genes VC1741 and VC1743 by RACE analysis.

The RTX toxin superfamily is a group of cytolysins and cytotoxins produced by bacteria. There are over 1000 known members with a variety of functions. The RTX family is defined by two common features: characteristic repeats in the toxin protein sequences, and extracellular secretion by the type I secretion systems (T1SS). The name RTX refers to the glycine and aspartate-rich repeats located at the C-terminus of the toxin proteins, which facilitate export by a dedicated T1SS encoded within the rtx operon.

Bacterial small RNAs (bsRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

Omptins are a family of bacterial proteases. They are aspartate proteases, which cleave peptides with the use of a water molecule. Found in the outer membrane of gram-negative enterobacteria such as Shigella flexneri, Yersinia pestis, Escherichia coli, and Salmonella enterica. Omptins consist of a widely conserved beta barrel spanning the membrane with 5 extracellular loops. These loops are responsible for the various substrate specificities. These proteases rely upon binding of lipopolysaccharide for activity.

EnvZ/OmpR is a two-component regulatory system widely distributed in bacteria and particularly well characterized in Escherichia coli. Its function is in osmoregulation, responding to changes in environmental osmolality by regulating the expression of the outer membrane porins OmpF and OmpC. EnvZ is a histidine kinase which also possesses a cytoplasmic osmosensory domain, and OmpR is its corresponding response regulator protein.

<span class="mw-page-title-main">OmpA domain</span>

In molecular biology, the OmpA domain is a conserved protein domain with a beta/alpha/beta/alpha-beta(2) structure found in the C-terminal region of many Gram-negative bacterial outer membrane proteins, such as porin-like integral membrane proteins, small lipid-anchored proteins, and MotB proton channels. The N-terminal half of these proteins is variable although some of the proteins in this group have the OmpA-like transmembrane domain at the N terminus. OmpA from Escherichia coli is required for pathogenesis, and can interact with host receptor molecules. MotB serve two functions in E. coli, the MotA(4)-MotB(2) complex attaches to the cell wall via MotB to form the stator of the flagellar motor, and the MotA-MotB complex couples the flow of ions across the cell membrane to movement of the rotor.

<span class="mw-page-title-main">Trimeric autotransporter adhesin</span> Proteins found on the outer membrane of Gram-negative bacteria

In molecular biology, trimeric autotransporter adhesins (TAAs), are proteins found on the outer membrane of Gram-negative bacteria. Bacteria use TAAs in order to infect their host cells via a process called cell adhesion. TAAs also go by another name, oligomeric coiled-coil adhesins, which is shortened to OCAs. In essence, they are virulence factors, factors that make the bacteria harmful and infective to the host organism.

<span class="mw-page-title-main">YadA bacterial adhesin protein domain</span>

In molecular biology, YadA is a protein domain which is short for Yersinia adhesin A. These proteins have strong sequence and structural homology, particularly at their C-terminal end. The function is to promote their pathogenicity and virulence in host cells, though cell adhesion. YadA is found in three pathogenic species of Yersinia, Y. pestis,Y. pseudotuberculosis, and Y. enterocolitica. The YadA domain is encoded for by a virulence plasmid in Yersinia, which encodes a type-III secretion (T3S) system consisting of the Ysc injectisome and the Yop effectors.

<span class="mw-page-title-main">OmpT</span>

OmpT is an aspartyl protease found on the outer membrane of Escherichia coli. OmpT is a subtype of the family of omptin proteases, which are found on some gram-negative species of bacteria.

<span class="mw-page-title-main">Bacterial secretion system</span> Protein complexes present on the cell membranes of bacteria for secretion of substances

Bacterial secretion systems are protein complexes present on the cell membranes of bacteria for secretion of substances. Specifically, they are the cellular devices used by pathogenic bacteria to secrete their virulence factors to invade the host cells. They can be classified into different types based on their specific structure, composition and activity. Generally, proteins can be secreted through two different processes. One process is a one-step mechanism in which proteins from the cytoplasm of bacteria are transported and delivered directly through the cell membrane into the host cell. Another involves a two-step activity in which the proteins are first transported out of the inner cell membrane, then deposited in the periplasm, and finally through the outer cell membrane into the host cell.

References

  1. Pautsch A, Schulz GE (Nov 1998). "Structure of the outer membrane protein A transmembrane domain". Nature Structural Biology. 5 (11): 1013–7. doi:10.1038/2983. PMID   9808047. S2CID   20529728.
  2. Smith SG, Mahon V, Lambert MA, Fagan RP (Aug 2007). "A molecular Swiss army knife: OmpA structure, function and expression". FEMS Microbiology Letters. 273 (1): 1–11. doi: 10.1111/j.1574-6968.2007.00778.x . PMID   17559395.
  3. Song T, Wai SN (July 2009). "A novel sRNA that modulates virulence and environmental fitness of Vibrio cholerae". RNA Biology. 6 (3): 254–8. doi: 10.4161/rna.6.3.8371 . PMID   19411843.
  4. Fernández C, Hilty C, Wider G, Güntert P, Wüthrich K (Mar 2004). "NMR structure of the integral membrane protein OmpX". Journal of Molecular Biology. 336 (5): 1211–21. doi:10.1016/j.jmb.2003.09.014. PMID   15037080.
  5. Prasadarao NV, Srivastava PK, Rudrabhatla RS, Kim KS, Huang SH, Sukumaran SK (Apr 2003). "Cloning and expression of the Escherichia coli K1 outer membrane protein A receptor, a gp96 homologue". Infection and Immunity. 71 (4): 1680–8. doi:10.1128/IAI.71.4.1680-1688.2003. PMC   152083 . PMID   12654781.
  6. Nair MK, Venkitanarayanan K, Silbart LK, Kim KS (May 2009). "Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells". Foodborne Pathogens and Disease. 6 (4): 495–501. doi:10.1089/fpd.2008.0228. PMID   19415974.
  7. Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK (Nov 2011). "Structural insights into Ail-mediated adhesion in Yersinia pestis". Structure. 19 (11): 1672–82. doi:10.1016/j.str.2011.08.010. PMC   3217190 . PMID   22078566.
  8. Dyer A, Brown G, Stejskal L, Laity PR, Bingham RJ (2015). "The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel". Bioscience Reports. 35 (4): e00240. doi:10.1042/BSR20150095. PMC   4613713 . PMID   26181365.