Operational availability

Last updated

Operational availability in systems engineering is a measurement of how long a system has been available to use when compared with how long it should have been available to be used.

Contents

Definition

Operational availability is a management concept that evaluates the following. [1]

Any failed item that is not corrected will induce operational failure. is used to evaluate that risk. Operational failure is unacceptable in any situation where the following can occur.

In military acquisition, operational availability is used as one of the Key Performance Parameters in requirements documents, to form the basis for decision support analyses. [2]

History

Aircraft systems, ship systems, missile systems, and space systems have a large number of failure modes that must be addressed with limited resources.

Formal reliability modeling during development is required to prioritize resource allocation before operation begins. Estimated failure rates and logistics delay are used to identify the number of forward positioned spare parts required to avoid excessive down time. This is also used to justify the expense associated with redundancy.

Formal availability measurement is used during operation to prioritize management decisions involving upgrade resource allocation, manpower allocation, and spare parts planning.

Principle

Operational availability is used to evaluate the following performance characteristic.

For a system that is expected to be available constantly, the below operational availability figures translate to the system being unavailable for approximately the following lengths of time (when all outages during a year are added together):

The following data is collected for maintenance actions while in operation to prioritize corrective funding.

This data is applied to the reliability block diagram to evaluate individual availability reduction contributions using the following formulas.

Redundant items do not contribute to availability reduction unless all of the redundant components fail simultaneously.

Operational availability is the overall availability considering each of these contributions.

See also

Related Research Articles

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

In reliability engineering, the term availability has the following meanings:

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

Mean time between failures (MTBF) is the predicted elapsed time between inherent failures of a mechanical or electronic system, during normal system operation. MTBF can be calculated as the arithmetic mean (average) time between failures of a system. The term is used for repairable systems, while mean time to failure (MTTF) denotes the expected time to failure for a non-repairable system.

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the current, and follows any changes in current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

<span class="mw-page-title-main">Fine structure</span> Details in the emission spectrum of an atom

In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.

<span class="mw-page-title-main">Lawson criterion</span> Criterion for igniting a nuclear fusion chain reaction

The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production is higher than the rate of loss, the system will produce net energy. If enough of that energy is captured by the fuel, the system will become self-sustaining and is said to be ignited.

In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when f is a function of several variables, because when f is a function of a single variable, the total derivative is the same as the ordinary derivative of the function.

Failure rate is the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering.

In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.

The Goldman–Hodgkin–Katz voltage equation, more commonly known as the Goldman equation, is used in cell membrane physiology to determine the reversal potential across a cell's membrane, taking into account all of the ions that are permeant through that membrane.

Range (aeronautics) Distance an aircraft can fly between takeoff and landing

The maximal total range is the maximum distance an aircraft can fly between takeoff and landing. Powered aircraft range is limited by the aviation fuel energy storage capacity considering both weight and volume limits. Unpowered aircraft range depends on factors such as cross-country speed and environmental conditions. The range can be seen as the cross-country ground speed multiplied by the maximum time in the air. The fuel time limit for powered aircraft is fixed by the available fuel and rate of consumption.

In astrophysics, the mass–luminosity relation is an equation giving the relationship between a star's mass and its luminosity, first noted by Jakob Karl Ernst Halm. The relationship is represented by the equation:

Availability is the probability that a system will work as required when required during the period of a mission. The mission could be the 18-hour span of an aircraft flight. The mission period could also be the 3 to 15-month span of a military deployment. Availability includes non-operational periods associated with reliability, maintenance, and logistics.

Maintenance Philosophy is the mix of strategies that ensure an item works as expected when needed.

Software reliability testing is a field of software-testing that relates to testing a software's ability to function, given environmental conditions, for a particular amount of time. Software reliability testing helps discover many problems in the software design and functionality.

Fault reporting is a maintenance concept that increases operational availability and that reduces operating cost through three mechanisms.

Active redundancy is a design concept that increases operational availability and that reduces operating cost by automating most critical maintenance actions.

<span class="mw-page-title-main">Two-ray ground-reflection model</span>

The two-rays ground-reflection model is a multipath radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in line of sight (LOS). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave.

There is a strong scientific consensus that greenhouse effect due to carbon dioxide is a main driver of climate change. Following is an illustrative model meant for a pedagogical purpose, showing the main physical determinants of the effect.

References

  1. "Opnav Instruction 4790.7: Maintenance Policy for United States Navy Ships". US Navy Operations. Archived from the original on 2013-02-15.
  2. "OPNAVINST 3000.12A, Operational Availability Handbook" (PDF). US Navy. 2 Sep 2003. Retrieved 29 Nov 2017.