Pairing

Last updated

In mathematics, a pairing is an R-bilinear map from the Cartesian product of two R-modules, where the underlying ring R is commutative.

Contents

Definition

Let R be a commutative ring with unit, and let M, N and L be R-modules.

A pairing is any R-bilinear map . That is, it satisfies

,
and

for any and any and any . Equivalently, a pairing is an R-linear map

where denotes the tensor product of M and N.

A pairing can also be considered as an R-linear map , which matches the first definition by setting .

A pairing is called perfect if the above map is an isomorphism of R-modules.

A pairing is called non-degenerate on the right if for the above map we have that for all implies ; similarly, is called non-degenerate on the left if for all implies .

A pairing is called alternating if and for all m. In particular, this implies , while bilinearity shows . Thus, for an alternating pairing, .

Examples

Any scalar product on a real vector space V is a pairing (set M = N = V, R = R in the above definitions).

The determinant map (2 × 2 matrices over k) → k can be seen as a pairing .

The Hopf map written as is an example of a pairing. For instance, Hardie et al. [1] present an explicit construction of the map using poset models.

Pairings in cryptography

In cryptography, often the following specialized definition is used: [2]

Let be additive groups and a multiplicative group, all of prime order . Let be generators of and respectively.

A pairing is a map:

for which the following holds:

  1. Bilinearity:
  2. Non-degeneracy:
  3. For practical purposes, has to be computable in an efficient manner

Note that it is also common in cryptographic literature for all groups to be written in multiplicative notation.

In cases when , the pairing is called symmetric. As is cyclic, the map will be commutative; that is, for any , we have . This is because for a generator , there exist integers , such that and . Therefore .

The Weil pairing is an important concept in elliptic curve cryptography; e.g., it may be used to attack certain elliptic curves (see MOV attack). It and other pairings have been used to develop identity-based encryption schemes.

Slightly different usages of the notion of pairing

Scalar products on complex vector spaces are sometimes called pairings, although they are not bilinear. For example, in representation theory, one has a scalar product on the characters of complex representations of a finite group which is frequently called character pairing.

See also

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Ring that is also a vector space or a module

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra of a vector space V is a graded associative algebra,

In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

In mathematics, and in particular functional analysis, the tensor product of Hilbert spaces is a way to extend the tensor product construction so that the result of taking a tensor product of two Hilbert spaces is another Hilbert space. Roughly speaking, the tensor product is the metric space completion of the ordinary tensor product. This is an example of a topological tensor product. The tensor product allows Hilbert spaces to be collected into a symmetric monoidal category.

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.

In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature. More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields.

<span class="mw-page-title-main">Classical group</span>

In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

In the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y].

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

This article summarizes several identities in exterior calculus.

References

  1. Hardie K.A.1; Vermeulen J.J.C.; Witbooi P.J., A nontrivial pairing of finite T0 spaces, Topology and its Applications, Volume 125, Number 3, 20 November 2002 , pp. 533–542.
  2. Dan Boneh, Matthew K. Franklin, Identity-Based Encryption from the Weil Pairing, SIAM J. of Computing, Vol. 32, No. 3, pp. 586–615, 2003.