Paraconcavistylon

Last updated

Paraconcavistylon
Temporal range: Ypresian
O
S
D
C
P
T
J
K
Pg
N
Scientific classification Red Pencil Icon.png
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Order: Trochodendrales
Family: Trochodendraceae
Genus: Paraconcavistylon
Manchester, Kvaček, & Judd, 2020
Species:
P. wehrii
Binomial name
Paraconcavistylon wehrii
(Manchester et al., 2018)
Synonyms
  • Concavistylon wehrii

Paraconcavistylon is an extinct genus of flowering plant in the family Trochodendraceae comprises a single species, Paraconcavistylon wehrii. The genus is known from fossil fruits and leaves found in the early Eocene deposits of northern Washington state, United States, and southern British Columbia, Canada. The species was initially described as a member of the related extinct genus Concavistylon as "Concavistylon" wehrii, but subsequently moved to the new genus Paraconcavistylon in 2020 after additional study.

Contents

Distribution and paleoenvironment

Paraconcavistylon wehrii is known from specimens which were recovered from outcrops of the early Eocene, Ypresian Klondike Mountain Formation in Republic [1] [2] and coeval McAbee Fossil Beds near Cache Creek, British Columbia. [2] The Klondike Mountain Formation and McAbee Fossil sites preserve upland temperate floras which were first interpreted as being microthermal, [3] [4] however further study has shown the floras to be more mesothermal in nature. [1] The plant community preserved in the Klondike Mountain formation is a mixed conifer–broadleaf forest with large pollen elements of birch and golden larch, but also having notable traces of fir, spruce, cypress, and palm. [1]

Taxonomy and phylogeny

The holotype was originally collected by Dwyane Day 1999 and subsequently donated to the University of Washington's Burke Museum as specimen UWBM PB 101336. One of the paratypes, specimen USNM 537360 is the earliest collected specimen, being recovered in 1901 by then Washington State Geologist Harry Landis. Study of the fossil by paleobotanists Steven Manchester et al resulted in the description of "Concavistylon" wehrii being published in 2018, 117 years after the Landis specimen was found. The specific name wehrii was chosen as a patronym honoring Wesley "Wes" Wehr for his enthusiasm and generosity. [2]

Often plant fossils are isolated parts such as leaves or seeds, which makes it difficult to identify relationships to other isolated parts. Such fossils from the same species are described as morphospecies. "Rosetta Stone" fossils are rare cases of multiple portions of a fossil preserved in connection. The holotype of Paraconcavistylon has been described as a Rosetta Stone fossil as it bears an infructescence attached to branchlet that also has leaves and terminal buds connected, allowing for a fuller plant description than is usually possible. [2] The description of Paleocene trochodendraceous fossils from Wyoming and a phylogenetic analysis of two living and four extinct genera indicated that Concavistylon was not monophyletic. [5] Based on the pendulous nature of "C." wehrii inflorescences, which are distinct from the erect inflorescences of C. kvacekii, the new genus Paraconcavistylon was erected with "C." wehrii as the type species. [5]

Trochodendraceae

Trochodendron

Eotrochion polystylum

Concavistylon kvacekii

Paraconcavistylon wehrii

Pentacentron sternhartae

Tetracentron

Paraconcavistylon wehrii is one of between three and four trochodendraceae species that have been described from the Klondike Mountain Formation. Broadly circumscribed three other species have been identified at Republic, Pentacentron sternhartae , Tetracentron hopkinsii , and Trochodendron nastae . Additionally the species Trochodendron drachukii is known from related Kamloops group shales at the McAbee Fossil Beds near Cache Creek, British Columbia. Manchester et al. 2018B noted that Tr. drachukii is likely the fruits of Tr. nastae, while Pe. sternhartae are likely the fruits of Te. hopkinsii. If fossils of the fruits and foliage in attachment are found, that would bring the species count down to three whole plant taxa. [2]

Description

The fruiting bodies of Paraconcavistylon wehrii are simple racemes that taper from a 3 mm (0.12 in) wide base down to a tip under 1 mm (0.039 in) wide, with lengths of up to and over 17 cm (6.7 in). Fruit capsules are born on 3–5 mm (0.12–0.20 in) pedicels which curve upwards towards the raceme apex in a helical pattern and the longest preserved raceme has 33 attached fruits, though the 10 cm (3.9 in) specimen is missing both basal and apical sections. Given the length of the racemes, they likely hung down like a pendulum, with the fruits pointing downwards. Each of the smooth teardrop shaped fruits is between 5–6 mm (0.20–0.24 in) wide by 5–7 mm (0.20–0.28 in) tall. They have a slight thickening in the basal area where a ring of perianth scars encircling the connection with the pedicel is, but are widest near the fruit apex. Between four and six 1.9–2.9 mm (0.075–0.114 in) long persistent styles are arranged just below the midpoint of the capsules and curving upwards towards the capsule apex. At the base of each style are swollen elliptical bulges that likely were nectaries. The fruits opened at the apex, with a four to six rayed star pattern formed by the dehiscence splits which run from just above the styles to the fruit apex where they join together. [2]

P. wehrii twigs have alternating leaves with terminal and axillary buds. The raceme is born from a fork of the twig and leaf, as are the pointed buds. Typically the axillary buds are around 8 mm (0.31 in) long by 1.8 mm (0.071 in) while the terminal buds are larger at 1 cm (0.39 in) long by 5 mm (0.20 in). Encircling the twig are between five and eight distinct terminal bud scars. [2]

The leaves have a narrow base connecting to the 8–12 mm (0.31–0.47 in) long petioles. They have regularly spaced teeth along the margin that are rounded and bearing glands, and a few specimens from the McAbee site also have distinct laminal lobes bracketing the petiole. The leaves have an overall range between 10.2–12.5 cm (4.0–4.9 in) long by 3.1–3.5 cm (1.2–1.4 in), with an obovate outline. Like Trochodendron the leaves have a pinnate vein structure, with between eight and fifteen secondary veins that fork from the central main vein and arch towards the leaf apex before merging with the secondary above. [2]

Related Research Articles

<i>Pseudolarix</i> Genus of deciduous conifers in the family Pinaceae

Pseudolarix is a genus of coniferous trees in the pine family Pinaceae containing three species, the extant Pseudolarix amabilis and the extinct species Pseudolarix japonica and Pseudolarix wehrii. Pseudolarix species are commonly known as golden larch, but are not true larches (Larix) being more closely related to Keteleeria, Abies and Cedrus. P. amabilis is native to eastern China, occurring in small areas in the mountains of southern Anhui, Zhejiang, Fujian, Jiangxi, Hunan, Hubei and eastern Sichuan, at altitudes of 100–1,500 m (328–4,921 ft). P. wehrii is described from fossils dating to the Early Eocene (Ypresian), of Western North America where it is found in the Eocene Okanagan Highlands Allenby and Klondike Mountain Formations. The youngest known occurrence is of mummified fossils found in the Late Eocene Buchanan Lake Formation on Axel Heiberg Island. P. japonica is known from Middle Miocene to Pliocene sediments in Japan and Miocene deposits of Korea. Fossils assigned to Pseudolarix as a genus date possibly as old as the Early Cretaceous Hauterivian stage in Mongolia.

<i>Trochodendron</i> Genus of flowing plants in the family Trochodendraceae

Trochodendron is a genus of flowering plants with one living species, Trochodendron aralioides, and six extinct species known from the fossil record. It was often considered the sole genus in the family Trochodendraceae, though botanists now also include the distinct genus Tetracentron in the family.

<i>Tetracentron</i> Genus of flowering plants in the family Trochodendraceae

Tetracentron is a genus of flowering plant with a sole living species being Tetracentron sinense and several extinct species. It was formerly considered the sole genus in the family Tetracentraceae, though it is now included in the family Trochodendraceae together with the genus Trochodendron.

<span class="mw-page-title-main">Trochodendraceae</span> Family of flowering plants

Trochodendraceae is the only family of flowering plants in the order Trochodendrales. It comprises two extant genera, each with a single species along with up to five additional extinct genera and a number of extinct species. The living species are native to south east Asia. The two living species both have secondary xylem without vessel elements, which is quite rare in angiosperms. As the vessel-free wood suggests primitiveness, these two species have attracted much taxonomic attention.

<i>Florissantia</i> (plant) Genus of plant in the mallow family (fossil)

Florissantia is an extinct genus of flowering plants in the Malvaceae subfamily Sterculioideae known from western North America and far eastern Asia. Flower, fruit, and pollen compression fossils have been found in formations ranging between the Early Eocene through to the Early Oligocene periods. The type species is Florissantia speirii and three additional species are known, Florissantia ashwillii, Florissantia quilchenensis, and Florissantia sikhote-alinensis.

<i>Trochodendron nastae</i> Extinct species of flowering plant

Trochodendron nastae is an extinct species of flowering plant in the family Trochodendraceae known from fossil leaves found in the early Eocene Ypresian stage Klondike Mountain Formation deposits of northern Washington state. T. nastae is one of the oldest members of the genus Trochodendron, which includes the living species T. aralioides, native to Japan, southern Korea and Taiwan and the coeval extinct species T. drachukii from the McAbee Fossil Beds near Cache Creek, British Columbia.

<i>Dillhoffia</i> Fossil genus of plants (fossil)

Dillhoffia is an extinct monotypic genus of flowering plant with a single species, Dillhoffia cachensis known from Ypresian age Eocene fossils found in British Columbia, Canada, and Washington, USA. The genus and species were described from fifteen specimens found in an unnamed formation belonging to the Kamloops group shales; and two specimens from the Klondike Mountain Formation. The unnamed formation outcrops at the McAbee Fossil Beds near Cache Creek, BC, which is designated the type locality while the two U.S. specimens were recovered from the Tom Thumb Tuff member of the Klondike Mountain Formation in Republic, Washington. It is of interest to note that of the Okanagan highlands fossil sites Dillhoffia is only known from two locations, and is absent or has not been identified from the others.

Trochodendron drachukii is an extinct species of flowering plants in the family Trochodendraceae known from a fossil fruiting structure found in the early Ypresian age Eocene fossils found in British Columbia, Canada. T. drachukii is one of the oldest members of the genus Trochodendron, which includes the living species T. aralioides, native to Japan, southern Korea and Taiwan and the coeval extinct species T. nastae from Washington state, United States.

<span class="mw-page-title-main">Klondike Mountain Formation</span>

The Klondike Mountain Formation is an Early Eocene (Ypresian) geological formation located in the northeast central area of Washington state. The formation is comprised of volcanic rocks in the upper unit and volcanic plus lacustrine (lakebed) sedimentation in the lower unit. the formation is named for the type location designated in 1962, Klondike Mountain northeast of Republic, Washington. The formation is a lagerstätte with exceptionally well-preserved plant and insect fossils has been found, along with fossil epithermal hot springs.

<i>Corylopsis reedae</i> Extinct species of flowering plant

Corylopsis reedae is an extinct species of flowering plant in the family Hamamelidaceae known from fossil leaves found in the early Eocene Klondike Mountain Formation deposits of northern Washington state. C. readae is one of the oldest occurrences of the winter-hazel genus Corylopsis, which includes between seven and thirty species, all found in Asia. Fossils from two other occurrences are of similar age to C. readae, with Paleocene specimens from Greenland being placed in the form taxon Corylopsiphyllum and an Eocene Alaskan fossil being included in Corylopsis without species placement.

<span class="mw-page-title-main">McAbee Fossil Beds</span>

The McAbee Fossil Beds is a Heritage Site that protects an Eocene Epoch fossil locality east of Cache Creek, British Columbia, Canada, just north of and visible from Provincial Highway 97 / the Trans-Canada Highway. The McAbee Fossil Beds, comprising 548.23 hectares, were officially designated a Provincial Heritage Site under British Columbia's Heritage Conservation Act on July 19, 2012. The site is part of an old lake bed which was deposited about 52 million years ago and is internationally recognised for the diversity of plant, insect, and fish fossils found there. Similar fossil beds in Eocene lake sediments, also known for their well preserved plant, insect and fish fossils, are found at Driftwood Canyon Provincial Park near Smithers in northern British Columbia, on the Horsefly River near Quesnel in central British Columbia, and at Republic in Washington, United States. The Princeton Chert fossil beds in southern British Columbia are also Eocene, but primarily preserve an aquatic plant community. A 2016 review of the early Eocene fossil sites from the interior of British Columbia discusses the history of paleobotanical research at McAbee, the Princeton Chert, Driftwood Canyon, and related Eocene fossil sites such as at Republic.

<i>Langeria</i> Extinct genus of flowering plants

Langeria is an extinct genus of flowering plants in the family Platanaceae containing the solitary species Langeria magnifica. Langeria is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States and similar aged formations in British Columbia, Canada.

<i>Ulmus okanaganensis</i> Extinct species of elm

Ulmus okanaganensis is an extinct species of flowering plant in the family Ulmaceae related to the modern elms. The species is known from fossil leaves, flowers, and fruits found in the early Eocene deposits of northern Washington state, United States and similar aged formations in British Columbia, Canada.

Concavistylon is an extinct genus of flowering plant in the family Trochodendraceae comprising a single species Concavistylon kvacekii. The genus is known from fossils found in Middle Miocene deposits of central Oregon. A second species "Concavistylon" wehrii was originally placed in Concavistylon, but subsequently moved to a new genus Paraconcavistylon in 2020.

<i>Pentacentron</i> Extinct genus of Trochodendralean plant

Pentacentron is an extinct genus of flowering plant in the family Trochodendraceae, consisting of the single species Pentacentron sternhartae. The genus is known from fossil fruits found in the early Eocene deposits of northern Washington state, United States. P. sternhartae are possibly the fruits belonging to the extinct trochodendraceous leaves Tetracentron hopkinsii.

<i>Tetracentron hopkinsii</i> Extinct species of flowering plant

Tetracentron hopkinsii is an extinct species of flowering plant in the family Trochodendraceae. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States and south Central British Columbia. The species was first described from fossil leaves found in the Allenby Formation. T. hopkinsii are possibly the leaves belonging to the extinct trochodendraceous fruits Pentacentron sternhartae.

Trochodendron postnastae is an extinct species of flowering plant in the family Trochodendraceae. The species is known from fossils found in Middle Miocene deposits of central Oregon. T. postnastae are possibly the leaves belonging to the extinct trochodendraceous fruits Trochodendron rosayi.

Trochodendron rosayi is an extinct species of flowering plant in the family Trochodendraceae. The species is known from fossils found in Middle Miocene deposits of central Oregon. T. rosayi are possibly the fruits belonging to the extinct trochodendraceous leaf species Trochodendron postnastae.

The paleoflora of the Eocene Okanagan Highlands includes all plant and fungi fossils preserved in the Eocene Okanagan Highlands Lagerstätten. The highlands are a series of Early Eocene geological formations which span an 1,000 km (620 mi) transect of British Columbia, Canada and Washington state, United States and are known for the diverse and detailed plant fossils which represent an upland temperate ecosystem immediately after the Paleocene-Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1880-90s on British Columbian sites, and 1920-30s for Washington sites. A returned focus and more detailed descriptive work on the Okanagan Highlands sites revived in the 1970's. The noted richness of agricultural plant families in Republic and Princeton floras resulted in the term "Eocene orchards" being used for the paleofloras.

<i>Fagus langevinii</i> Fossil species of beech tree

Fagus langevinii is an extinct species of beech in the family Fagaceae. The species is known from fossil fruits, nuts, pollen, and leaves found in the early Eocene deposits of South central British Columbia, and northern Washington state, United States.

References

  1. 1 2 3 Moss, P. T.; Greenwood, D. R.; Archibald, S. B. (2005). "Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia – Washington State) from palynology" (PDF). Canadian Journal of Earth Sciences. 42 (2): 187–204. Bibcode:2005CaJES..42..187M. doi:10.1139/E04-095.
  2. 1 2 3 4 5 6 7 8 Manchester, S.; Pigg, K. B.; Kvaček, Z; DeVore, M. L.; Dillhoff, R. M. (2018). "Newly recognized diversity in Trochodendraceae from the Eocene of western North America". International Journal of Plant Sciences. 179 (8): 663–676. doi:10.1086/699282. S2CID   92201595.
  3. Wolfe, J. A.; Tanai, T. (1987). "Systematics, Phylogeny, and Distribution of Acer (maples) in the Cenozoic of Western North America". Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy. 22 (1): 1–246. hdl: 2115/36747 .
  4. Wolfe, J.A.; Wehr, W.C. (1987). "Middle Eocene dicotyledonous plants from Republic, northeastern Washington". United States Geological Survey Bulletin. 1597: 1–25. doi: 10.3133/b1597 .
  5. 1 2 Manchester, S. R.; Kvaček, Z.; Judd, W. S. (2020). "Morphology, anatomy, phylogenetics and distribution of fossil and extant Trochodendraceae in the Northern Hemisphere". Botanical Journal of the Linnean Society. 195 (3): 467–484. doi: 10.1093/botlinnean/boaa046 .