Paramotor

Last updated
Paramotor Paramotor In Flight by Jeff Goin.jpg
Paramotor
Paramotor pilot "reverse launching", showing how seat bottom moves to allow for easy ground handling Wiki Paramotor by JeffGoin At PEI.jpg
Paramotor pilot "reverse launching", showing how seat bottom moves to allow for easy ground handling

Paramotor is the generic name for the harness and propulsive portion of a powered paraglider ("PPG"). There are two basic types of paramotors: foot launch and wheel launch.

Foot launch models consist of a frame with harness, fuel tank, engine, and propeller. A hoop with protective netting primarily keeps lines out of the propeller. The unit is worn like a large backpack to which a paraglider is attached through carabiners.

Wheel launch units either come as complete units with their own motor and propeller, or as an add-on to a foot-launch paramotor. They usually have three (trike) or four (quad) wheels, with seats for one or two occupants. These are distinct from powered parachutes which are generally much heavier, more powerful, and have different steering.

The term was first used by Englishman Mike Byrne in 1980 [1] and popularized in France around 1986 when La Mouette began adapting power to the then-new paraglider wings.

Power plants are almost exclusively small two-stroke internal combustion engines, between 80 cc and 350 cc, that burn a mixture of gasoline and oil. These engines are favored for their high thrust-to-weight ratio of engine plus fuel; they use approximately 3.7 litres (1 US Gal.) of fuel per hour depending on paraglider efficiency, the weight of unit plus pilot, and weather conditions. At least one manufacturer produces a 4-stroke model with better fuel efficiency, which produces strong thrust at lower rotational speeds (RPM). Electrically powered units are also made, though flight duration is limited by battery weight. Csaba Lemak built the first electric PPG, flying it first on 13 June 2006. [2] [3] Wankel rotary engined paramotors are also available, but rare.[ citation needed ]

The pilot controls thrust via a hand-held throttle and steers using the wing's brake toggles, stabilo steering, weight shifting or a combination of the three. Unlike unpowered paragliding, launching from an elevation or catching thermal columns to ascend are not required. Paramotor wings somewhat different from free flight "paraglider" wings have evolved; such wings are typically designed for a higher speed and may incorporate a "reflex" profile to aid stability in pitch, an idea taken from hang gliders of the 1980s, and developed and pioneered by British designer Mike Campbell-Jones. Paramotor wings typically use trimmers to adjust the angle of attack of the wing to decrease or increase speed. Trimmed out allows the pilot to achieve maximum speed, while trimmed in allows slower speeds, required for launching and landing. Trimmers usually act on the rear of the wing. The angle of attack can also be adjusted by a pulley-style system activated by a bar pushed by the pilot's feet, called a speedbar. This system generally acts on the leading edge of the wing; it is only activated in-flight, and is not usually activated on takeoff or landing. Due to the torque effect of the motor, this can cause the glider to turn, especially under hard acceleration. Trimmers can be adjusted unequally to counter this effect.

The most difficult aspect of paramotoring is controlling the wing (paraglider) on the ground during launch and upon landing. Initial training in becoming a paramotor pilot involves managing the wing in the air from the ground without the motor. This process, called kiting, is the most complicated and important step in the process. Once kiting the wing on the ground is mastered, the motor is added to the process to practice with the weight of the paramotor included. A typical paramotor weighs on average around 50 lb (23 kg) with some models as light at 40 lb (18 kg) and some models as heavy as 75 lb (34 kg). The size of the paramotor wing and engine required depend on the weight of the pilot: the heavier the pilot, the larger the size of the wing and thrust required to launch. Most people in reasonably good health can foot-launch a paramotor; some pilots with artificial joints foot-launch. People with issues with the physical aspect of foot launching may opt to add a trike or quad to their paramotor, a platform to which the paramotor can be attached so it can be launched rolling on wheels.

Paramotoring has evolved, and as of the 2020s many advanced pilots perform extreme maneuvers such as wing-overs, barrel rolls and loops.[ citation needed ] These types of maneuvers present a significant danger, as if the wing is subjected to negative G it will unload, allowing its lines to go slack, losing lift. These maneuvers are typically practised only by very advanced pilots, who wear a reserve parachute to use in case of loss of control.

Several home-made paramotors have been successfully fabricated and flown over the years. The most notable of which is the small and relatively inexpensive 4-stroke 'Eggmotor' made by Robert Shaw. Modifying a lowly generator engine, building a chassis and calculating the right size propeller has gained him a small following worldwide since the start of his development back in 2009. His website that details the construction process can be found here: http://eggmotor.atspace.co.uk

See also

Related Research Articles

<span class="mw-page-title-main">Paragliding</span> Soaring with a paraglider

Paragliding is the recreational and competitive adventure sport of flying paragliders: lightweight, free-flying, foot-launched glider aircraft with no rigid primary structure. The pilot sits in a harness or in a cocoon-like 'pod' suspended below a fabric wing. Wing shape is maintained by the suspension lines, the pressure of air entering vents in the front of the wing, and the aerodynamic forces of the air flowing over the outside.

<span class="mw-page-title-main">Ultralight aviation</span> Aviation field involving lightweight aircraft

Ultralight aviation is the flying of lightweight, 1- or 2-seat fixed-wing aircraft. Some countries differentiate between weight-shift control and conventional three-axis control aircraft with ailerons, elevator and rudder, calling the former "microlight" and the latter "ultralight".

<span class="mw-page-title-main">Powered paragliding</span> Form of ultralight aviation

Powered paragliding, also known as paramotoring or PPG, is a form of ultralight aviation where the pilot wears a back-pack motor which provides enough thrust to take off using a paraglider. It can be launched in still air, and on level ground, by the pilot alone—no assistance is required.

<span class="mw-page-title-main">Powered parachute</span> Parachute with motor and wheels

A powered parachute, often abbreviated PPC, and also called a motorized parachute or paraplane, is a type of aircraft that consists of a parafoil with a motor and wheels.

<span class="mw-page-title-main">Powered hang glider</span> Foot-launched powered hang glider

A foot-launched powered hang glider (FLPHG), also called powered harness, nanolight, or hangmotor, is a powered hang glider harness with a motor and propeller in pusher configuration. An ordinary hang glider is used for its wing and control frame, and the pilot can foot-launch from a hill or from flat ground, needing a length of about a football field to get airborne, or much less if there is an oncoming breeze and no obstacles.

The Adventure F series is a family of French paramotor designs that was designed and produced by Adventure SA of Méré, Yonne, for powered paragliding.

The Daiichi Kosho Whisper is a Japanese paramotor that was designed and produced by the Daiichi Kosho Company for powered paragliding.

The Phoenix Industries B1Z ParaFlyer is an American paramotor that was designed and produced by Phoenix Industries of Southampton, New Jersey for powered paragliding.

The Paramotor Inc FX series is a family of American paramotors that was designed and produced by Paramotor Inc of Weldon Spring, Missouri for powered paragliding.

The Fly Products Power is a family of Italian paramotors that was designed and produced by Fly Products of Grottammare for powered paragliding.

The La Mouette Skybike is a line of French paramotors that was designed and produced by La Mouette of Fontaine-lès-Dijon for powered paragliding.

The Southern Skies Spymotor is an American paramotor that was designed and produced by Southern Skies of Taylorsville, North Carolina for powered paragliding.

The Skyjam ST-Freestyle is a Swiss electric aircraft that can be flown as an ultralight trike, powered parachute and powered paraglider. It was designed and produced by Skyjam Paragliders of Einsiedeln, but the company appears to be out of business as of 2013 and production is assumed to be complete. When it was available the aircraft was supplied as a complete ready-to-fly-aircraft.

The Fly Castelluccio Flash is a family of Italian paramotors that was designed and produced by Fly Castelluccio of Ascoli Piceno for powered paragliding. Now out of production, when it was available the aircraft were supplied complete and ready-to-fly.

The H&E Paramotores Corsario is a Spanish paramotor that was designed and produced by H&E Paramotores of Madrid for powered paragliding. Now out of production, when it was available the aircraft was supplied complete and ready-to-fly.

The H&E Paramotores Simonini is a Spanish paramotor that was designed and produced by H&E Paramotores of Madrid for powered paragliding. Now out of production, when it was available the aircraft was supplied complete and ready-to-fly.

The H&E Paramotores Solo is a Spanish paramotor that was designed and produced by H&E Paramotores of Madrid for powered paragliding. Now out of production, when it was available the aircraft was supplied complete and ready-to-fly.

The H&E Paramotores Ziklon is a Spanish paramotor that was designed and produced by H&E Paramotores of Madrid for powered paragliding. Now out of production, when it was available the aircraft was supplied complete and ready-to-fly.

The Reflex Bi Trike is a French paramotor that was designed by Dominique Cholou and produced by Reflex Paramoteur of Chatou for powered paragliding. Now out of production, when it was available the aircraft was supplied complete and ready-to-fly.

The Bailey V5 is a British paramotor, designed and produced by Bailey Aviation of Royston, Hertfordshire for powered paragliding. The aircraft is supplied complete and ready-to-fly.

References

  1. Goin, Jeff (2006). Dennis Pagen (ed.). The Powered Paragliding Bible. p. 253. ISBN   0-9770966-0-2.
  2. "Marks Paragliding Pages". First Electric PPG. Mark Andrews. 2006-06-13. Retrieved 2007-01-25.
  3. "Electric PPG Questions". Electric Paramotor Website. Airhead Creations. 2006-06-25. Retrieved 2007-01-25.