Petersen matrix

Last updated

The Petersen matrix is a comprehensive description of systems of biochemical reactions used to model reactors for pollution control (engineered decomposition) as well as in environmental systems. It has got as many columns as the number of relevant involved components (chemicals, pollutants, biomasses, gases) and as many rows as the number of involved processes (biochemical reactions and physical degradation). One further column is added to host the description of the kinetics of each transformation (rate equation). [1] [2]

Contents

Matrix structure

The mass conservation principle for each process is expressed in the rows of the matrix. If all components are included (none omitted) then the mass conservation principle states that, for each process:

where is the density rate of each component. This can also be seen as the process stoichiometric relation.

Moreover, the rate of variation of each component for all processes simultaneous effect can be easily assessed by summing the columns:

where are the reaction rates of each process.

Example

A system of a third order reaction followed by a Michaelis–Menten enzyme reaction.

where the reagents A and B combine forming the substrate S (S = AB2), which with the help of enzyme E is transformed into the product P. Production rates for each substance is:

Therefore, the Petersen matrix reads as

Components
(kmol/m³)
Process
ABSEESPReaction rate
P1: 2nd order formation of S from A and B−1−2+1000
P2: Formation of ES from E and S00−1−1+10
P3: Back decomposition of ES into E and S00+1+1−10
P4: Forward decomposition of ES into E and P000+1−1+1

The Petersen matrix can be used to write the system's rate equation

Related Research Articles

Pauli matrices Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In physics, angular velocity or rotational velocity, also known as angular frequency vector, is a vector measure of rotation rate, that refers to how fast an object rotates or revolves relative to another point, i.e. how fast the angular position or orientation of an object changes with time.

Cayley–Hamilton theorem Every square matrix over a commutative ring satisfies its own characteristic equation

In linear algebra, the Cayley–Hamilton theorem states that every square matrix over a commutative ring satisfies its own characteristic equation.

Special unitary group

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

In the mathematical field of differential geometry, one definition of a metric tensor is a type of function which takes as input a pair of tangent vectors v and w at a point of a surface and produces a real number scalar g(v, w) in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean space. In the same way as a dot product, metric tensors are used to define the length of and angle between tangent vectors. Through integration, the metric tensor allows one to define and compute the length of curves on the manifold.

In mathematics, Itô's lemma is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.

Four-vector Vector in special relativity well-behaved with respect to Lorentz transformations

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformation. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (½,½) representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

Michaelis–Menten kinetics Model of enzyme kinetics

In biochemistry, Michaelis–Menten kinetics is one of the best-known models of enzyme kinetics. It is named after German biochemist Leonor Michaelis and Canadian physician Maud Menten. The model takes the form of an equation describing the rate of enzymatic reactions, by relating reaction rate to , the concentration of a substrate S. Its formula is given by

Euler equations (fluid dynamics)

In fluid dynamics, the Euler equations are a set of quasilinear hyperbolic equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. The equations represent Cauchy equations of conservation of mass (continuity), and balance of momentum and energy, and can be seen as particular Navier–Stokes equations with zero viscosity and zero thermal conductivity. In fact, Euler equations can be obtained by linearization of some more precise continuity equations like Navier–Stokes equations in a local equilibrium state given by a Maxwellian. The Euler equations can be applied to incompressible and to compressible flow – assuming the flow velocity is a solenoidal field, or using another appropriate energy equation respectively. Historically, only the incompressible equations have been derived by Euler. However, fluid dynamics literature often refers to the full set – including the energy equation – of the more general compressible equations together as "the Euler equations".

The rate law or rate equation for a chemical reaction is an equation that links the initial or forward reaction rate with the concentrations or pressures of the reactants and constant parameters. For many reactions, the initial rate is given by a power law such as

Phase plane

In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say, or etc.. It is a two-dimensional case of the general n-dimensional phase space.

Ornstein–Uhlenbeck process

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

Enzyme kinetics Study of biochemical reaction rates catalysed by an enzyme

Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier might affect the rate.

The following are important identities involving derivatives and integrals in vector calculus.

Chemical reaction network theory is an area of applied mathematics that attempts to model the behaviour of real-world chemical systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in biochemistry and theoretical chemistry. It has also attracted interest from pure mathematicians due to the interesting problems that arise from the mathematical structures involved.

In numerical linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.

An affine term structure model is a financial model that relates zero-coupon bond prices to a spot rate model. It is particularly useful for deriving the yield curve – the process of determining spot rate model inputs from observable bond market data. The affine class of term structure models implies the convenient form that log bond prices are linear functions of the spot rate.

Competitive inhibition Interruption of a chemical pathway when one substance inhibits the effect of another by competing with it for binding or bonding

Competitive inhibition is interruption of a chemical pathway owing to one chemical substance inhibiting the effect of another by competing with it for binding or bonding. Any metabolic or chemical messenger system can potentially be affected by this principle, but several classes of competitive inhibition are especially important in biochemistry and medicine, including the competitive form of enzyme inhibition, the competitive form of receptor antagonism, the competitive form of antimetabolite activity, and the competitive form of poisoning.

References

  1. Russell, David L. (2006). Practical wastewater treatment. Hoboken, NJ: Wiley. p. 288. ISBN   978-0-471-78044-1.
  2. Fang, editor, Herbert H.P. (2010). Environmental anaerobic technology : applications and new developments. London: Imperial College Press. ISBN   9781848165427.CS1 maint: extra text: authors list (link)