Phenomenology (physics)

Last updated

In physics, phenomenology is the application of theoretical physics to experimental data by making quantitative predictions based upon known theories. It is related to the philosophical notion of the same name in that these predictions describe anticipated behaviors for the phenomena in reality. Phenomenology stands in contrast with experimentation in the scientific method, in which the goal of the experiment is to test a scientific hypothesis instead of making predictions.

Contents

Phenomenology is commonly applied to the field of particle physics, where it forms a bridge between the mathematical models of theoretical physics (such as quantum field theories and theories of the structure of space-time) and the results of the high-energy particle experiments. It is sometimes used in other fields such as in condensed matter physics [1] [2] and plasma physics, [3] [4] when there are no existing theories for the observed experimental data.

Applications in particle physics

Standard Model consequences

Within the well-tested and generally accepted Standard Model, phenomenology is the calculating of detailed predictions for experiments, usually at high precision (e.g., including radiative corrections).

Examples include:

CKM matrix calculations

The CKM matrix is useful in these predictions:

Theoretical models

In Physics beyond the Standard Model, phenomenology addresses the experimental consequences of new models: how their new particles could be searched for, how the model parameters could be measured, and how the model could be distinguished from other, competing models.

Phenomenological analysis

Phenomenological analyses, in which one studies the experimental consequences of adding the most general set of beyond-the-Standard-Model effects in a given sector of the Standard Model, usually parameterized in terms of anomalous couplings and higher-dimensional operators. In this case, the term "phenomenological" is being used more in its philosophy of science sense.

See also

Related Research Articles

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions and bosons. There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

<span class="mw-page-title-main">Quark</span> Elementary particle

A quark is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

<span class="mw-page-title-main">Quantum chromodynamics</span> Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are
W+
,
W
, and
Z0
. The
W±
 bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The
Z0
 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The
W±
 bosons have a magnetic moment, but the
Z0
has none. All three of these particles are very short-lived, with a half-life of about 3×10−25 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

<span class="mw-page-title-main">Glueball</span> Hypothetical particle composed of gluons

In particle physics, a glueball is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable.

In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix which contains information on the strength of the flavour-changing weak interaction. Technically, it specifies the mismatch of quantum states of quarks when they propagate freely and when they take part in the weak interactions. It is important in the understanding of CP violation. This matrix was introduced for three generations of quarks by Makoto Kobayashi and Toshihide Maskawa, adding one generation to the matrix previously introduced by Nicola Cabibbo. This matrix is also an extension of the GIM mechanism, which only includes two of the three current families of quarks.

In particle physics, preons are point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as the Standard Model of particle physics continues to describe physics mostly successfully, and no direct experimental evidence for lepton and quark compositeness has been found. Preons come in four varieties, plus, anti-plus, zero and anti-zero. W bosons have six preons, and quarks and leptons have only three.

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

The J. J. Sakurai Prize for Theoretical Particle Physics, is presented by the American Physical Society at its annual April Meeting, and honors outstanding achievement in particle physics theory. The prize consists of a monetary award (US$10,000), a certificate citing the contributions recognized by the award, and a travel allowance for the recipient to attend the presentation. The award is endowed by the family and friends of particle physicist J. J. Sakurai. The prize has been awarded annually since 1985.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

The A.I. Alikhanyan National Science Laboratory is a research institute located in Yerevan, Armenia. It was founded in 1943 as a branch of the Yerevan State University by brothers Abram Alikhanov and Artem Alikhanian. It was often referred to by the acronym YerPhI. In 2011 it was renamed to its current name A.I. Alikhanyan National Science Laboratory.

This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process. Multiple discovery sometimes occurs when multiple research groups discover the same phenomenon at about the same time, and scientific priority is often disputed. The listings below include some of the most significant people and ideas by date of publication or experiment.

<span class="mw-page-title-main">CP violation</span> Violation of charge-parity symmetry in particle physics and cosmology

In particle physics, CP violation is a violation of CP-symmetry : the combination of C-symmetry and P-symmetry. CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted. The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch.

Phenomenological quantum gravity is the research field that deals with phenomenology of quantum gravity. The relevance of this research area derives from the fact that none of the candidate theories for quantum gravity has yielded experimentally testable predictions. Phenomenological models are designed to bridge this gap by allowing physicists to test for general properties that the hypothetical correct theory of quantum gravity has. Furthermore, due to this current lack of experiments, it is not known for sure that gravity is indeed quantum, and so evidence is required to determine whether this is the case. Phenomenological models are also necessary to assess the promise of future quantum gravity experiments.

In particle physics, composite Higgs models (CHM) are speculative extensions of the Standard Model (SM) where the Higgs boson is a bound state of new strong interactions. These scenarios are models for physics beyond the SM presently tested at the Large Hadron Collider (LHC) in Geneva.

<span class="mw-page-title-main">Wendelstein 7-AS</span> Stellarator for plasma fusion experiments (1988-2002)

Wendelstein 7-AS was an experimental stellarator which was in operation from 1988 to 2002 by the Max Planck Institute for Plasma Physics (IPP) in Garching. It was the first of a new class of advanced stellarators with modular coils, designed with the goal of developing a nuclear fusion reactor to generate electricity.

GrigoryEfimovich Volovik is a Russian theoretical physicist, who specializes in condensed matter physics. He is known for the Volovik effect.

References

  1. "Phenomenological Theory", Condensed Matter Physics, John Wiley & Sons, Inc., 2010-11-30, pp. 611–631, doi: 10.1002/9780470949955.ch20 , ISBN   9780470949955
  2. Malcherek, T.; Salje, E. K. H.; Kroll, H. (1997). "A phenomenological approach to ordering kinetics for partially conserved order parameters". Journal of Physics: Condensed Matter. 9 (38): 8075. Bibcode:1997JPCM....9.8075M. doi:10.1088/0953-8984/9/38/013. ISSN   0953-8984. S2CID   250801926.
  3. Moret, J.-M.; Supra, E. Tore (1992). "Tokamak transport phenomenology and plasma dynamic response". Nuclear Fusion. 32 (7): 1241. Bibcode:1992NucFu..32.1241M. doi:10.1088/0029-5515/32/7/I13. ISSN   0029-5515. S2CID   250802918.
  4. Roth, J. Reece; Dai, Xin; Rahel, Jozef; Sherman, Daniel (2005-01-10). The Physics and Phenomenology of Paraelectric One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Actuators for Aerodynamic Flow Control. 43rd AIAA Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.2005-781. ISBN   9781624100642.