Phenomics

Last updated

Phenomics is the systematic study of traits that make up a phenotype. [1] It was coined by UC Berkeley and LBNL scientist Steven A. Garan. [2] [3] As such, it is a transdisciplinary area of research that involves biology, data sciences, engineering and other fields. Phenomics is concerned with the measurement of the phenotype where a phenome is a set of traits (physical and biochemical traits) that can be produced by a given organism over the course of development and in response to genetic mutation and environmental influences. It is also important to remember that an organism's phenotype changes with time. The relationship between phenotype and genotype enables researchers to understand and study pleiotropy. [4] Phenomics concepts are used in functional genomics, pharmaceutical research, metabolic engineering, agricultural research, and increasingly in phylogenetics. [5]

Contents

Technical challenges involve improving, both qualitatively and quantitatively, the capacity to measure phenomes. [4]

Applications

Plant sciences

In plant sciences, phenomics research occurs in both field and controlled environments. Field phenomics encompasses the measurement of phenotypes that occur in both cultivated and natural conditions, whereas controlled environment phenomics research involves the use of glass houses, growth chambers, and other systems where growth conditions can be manipulated. The University of Arizona's Field Scanner [6] in Maricopa, Arizona is a platform developed to measure field phenotypes. Controlled environment systems include the Enviratron [7] at Iowa State University, the Plant Cultivation Hall under construction at IPK, and platforms at the Donald Danforth Plant Science Center, the University of Nebraska-Lincoln, and elsewhere.

Standards, methods, tools, and instrumentation

A Minimal Information About a Plant Phenotyping Experiment (MIAPPE) standard [8] is available and in use among many researchers collecting and organizing plant phenomics data. A diverse set of computer vision methods exist to analyze 2D and 3D imaging data of plants. These methods are available to the community in various implementations, ranging from end-user ready cyber-platforms in the cloud such as DIRT [9] and PlantIt [10] to programming frameworks for software developers such as PlantCV. [11] Many research groups are focused on developing systems using the Breeding API, a Standardized RESTful Web Service API Specification for communicating Plant Breeding Data.

The Australian Plant Phenomics Facility (APPF), an initiative of the Australian government, has developed a number of new instruments for comprehensive and fast measurements of phenotypes in both the lab and the field.

Research coordination and communities

The International Plant Phenotyping Network (IPPN) [12] is an organization that seeks to enable exchange of knowledge, information, and expertise across many disciplines involved in plant phenomics by providing a network linking members, platform operators, users, research groups, developers, and policy makers. Regional partners include, the European Plant Phenotyping Network (EPPN), the North American Plant Phenotyping Network (NAPPN), [13] and others.

The European research infrastructure for plant phenotyping, EMPHASIS, [14] enables researchers to use facilities, services and resources for multi-scale plant phenotyping across Europe. EMPHASIS aims to promote future food security and agricultural business in a changing climate by enabling scientists to better understand plant performance and translate this knowledge into application.

See also

Related Research Articles

Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed or not, depending on whether they are inherited from the female or male parent. Genes can also be partially imprinted. Partial imprinting occurs when alleles from both parents are differently expressed rather than complete expression and complete suppression of one parent's allele. Forms of genomic imprinting have been demonstrated in fungi, plants and animals. In 2014, there were about 150 imprinted genes known in mice and about half that in humans. As of 2019, 260 imprinted genes have been reported in mice and 228 in humans.

<span class="mw-page-title-main">Phenotype</span> Composite of the organisms observable characteristics or traits

In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".

<span class="mw-page-title-main">Heritability</span> Estimation of effect of genetic variation on phenotypic variation of a trait

Heritability is a statistic used in the fields of breeding and genetics that estimates the degree of variation in a phenotypic trait in a population that is due to genetic variation between individuals in that population. The concept of heritability can be expressed in the form of the following question: "What is the proportion of the variation in a given trait within a population that is not explained by the environment or random chance?"

<span class="mw-page-title-main">Stabilizing selection</span> Type of selection in evolution where a trait stabilizes around the average value

Stabilizing selection is a type of natural selection in which the population mean stabilizes on a particular non-extreme trait value. This is thought to be the most common mechanism of action for natural selection because most traits do not appear to change drastically over time. Stabilizing selection commonly uses negative selection to select against extreme values of the character. Stabilizing selection is the opposite of disruptive selection. Instead of favoring individuals with extreme phenotypes, it favors the intermediate variants. Stabilizing selection tends to remove the more severe phenotypes, resulting in the reproductive success of the norm or average phenotypes. This means that most common phenotype in the population is selected for and continues to dominate in future generations.

The UC Davis MIND Institute is a research and treatment center affiliated with the University of California, Davis, with facilities located on the UC Davis Medical Center campus in Sacramento, California. The institute is a consortium of scientists, educators, physicians and parents dedicated to researching the causes of and treatments for autism spectrum disorders, fragile X syndrome, and other neurodevelopmental disorders. The director of the MIND institute is Dr. Leonard Abbeduto.

The candidate gene approach to conducting genetic association studies focuses on associations between genetic variation within pre-specified genes of interest, and phenotypes or disease states. This is in contrast to genome-wide association studies (GWAS), which is a hypothesis-free approach that scans the entire genome for associations between common genetic variants and traits of interest. Candidate genes are most often selected for study based on a priori knowledge of the gene's biological functional impact on the trait or disease in question. The rationale behind focusing on allelic variation in specific, biologically relevant regions of the genome is that certain alleles within a gene may directly impact the function of the gene in question and lead to variation in the phenotype or disease state being investigated. This approach often uses the case-control study design to try to answer the question, "Is one allele of a candidate gene more frequently seen in subjects with the disease than in subjects without the disease?" Candidate genes hypothesized to be associated with complex traits have generally not been replicated by subsequent GWASs or highly powered replication attempts. The failure of candidate gene studies to shed light on the specific genes underlying such traits has been ascribed to insufficient statistical power, low prior probability that scientists can correctly guess a specific allele within a specific gene that is related to a trait, poor methodological practices, and data dredging.

A phene is an individual genetically determined characteristic or trait which can be possessed by an organism, such as eye colour, height, behavior, tooth shape or any other observable characteristic.

<span class="mw-page-title-main">Evolutionary physiology</span> Study of changes in physiological characteristics

Evolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of individuals in a population of organisms have responded to natural selection across multiple generations during the history of the population. It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.

Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker linked to a trait of interest, rather than on the trait itself. This process has been extensively researched and proposed for plant- and animal- breeding.

MorphoBank is a web application for collaborative evolutionary research, specifically phylogenetic systematics or cladistics, on the phenotype. Historically, scientists conducting research on phylogenetic systematics have worked individually or in small groups employing traditional single-user software applications such as MacClade, Mesquite and Nexus Data Editor. As the hypotheses under study have grown more complex, large research teams have assembled to tackle the problem of discovering the Tree of Life for the estimated 4-100 million living species(Wilson 2003, pp. 77–80) and the many thousands more extinct species known from fossils. Because the phenotype is fundamentally visual, and as phenotype-based phylogenetic studies have continued to increase in size, it becomes important that observations be backed up by labeled images. Traditional desktop software applications currently in wide use do not provide robust support for team-based research or for image manipulation and storage. MorphoBank is a particularly important tool for the growing scientific field of phenomics.

In genetic epidemiology, endophenotype is a term used to separate behavioral symptoms into more stable phenotypes with a clear genetic connection. By seeing the EP notion as a special case of a larger collection of multivariate genetic models, which may be fitted using currently accessible methodology, it is possible to maximize its valuable potential lessons for etiological study in psychiatric disorders. The concept was coined by Bernard John and Kenneth R. Lewis in a 1966 paper attempting to explain the geographic distribution of grasshoppers. They claimed that the particular geographic distribution could not be explained by the obvious and external "exophenotype" of the grasshoppers, but instead must be explained by their microscopic and internal "endophenotype". The endophenotype idea represents the influence of two important conceptual currents in biology and psychology research. An adequate technology would be required to perceive the endophenotype, which represents an unobservable latent entity that cannot be directly observed with the unaided naked eye. In the investigation of anxiety and affective disorders, the endophenotype idea has gained popularity.

<span class="mw-page-title-main">Neurogenetics</span> Study of role of genetics in the nervous system

Neurogenetics studies the role of genetics in the development and function of the nervous system. It considers neural characteristics as phenotypes, and is mainly based on the observation that the nervous systems of individuals, even of those belonging to the same species, may not be identical. As the name implies, it draws aspects from both the studies of neuroscience and genetics, focusing in particular how the genetic code an organism carries affects its expressed traits. Mutations in this genetic sequence can have a wide range of effects on the quality of life of the individual. Neurological diseases, behavior and personality are all studied in the context of neurogenetics. The field of neurogenetics emerged in the mid to late 20th century with advances closely following advancements made in available technology. Currently, neurogenetics is the center of much research utilizing cutting edge techniques.

In multivariate quantitative genetics, a genetic correlation is the proportion of variance that two traits share due to genetic causes, the correlation between the genetic influences on a trait and the genetic influences on a different trait estimating the degree of pleiotropy or causal overlap. A genetic correlation of 0 implies that the genetic effects on one trait are independent of the other, while a correlation of 1 implies that all of the genetic influences on the two traits are identical. The bivariate genetic correlation can be generalized to inferring genetic latent variable factors across > 2 traits using factor analysis. Genetic correlation models were introduced into behavioral genetics in the 1970s–1980s.

Behavioural genetics, also referred to as behaviour genetics, is a field of scientific research that uses genetic methods to investigate the nature and origins of individual differences in behaviour. While the name "behavioural genetics" connotes a focus on genetic influences, the field broadly investigates the extent to which genetic and environmental factors influence individual differences, and the development of research designs that can remove the confounding of genes and environment. Behavioural genetics was founded as a scientific discipline by Francis Galton in the late 19th century, only to be discredited through association with eugenics movements before and during World War II. In the latter half of the 20th century, the field saw renewed prominence with research on inheritance of behaviour and mental illness in humans, as well as research on genetically informative model organisms through selective breeding and crosses. In the late 20th and early 21st centuries, technological advances in molecular genetics made it possible to measure and modify the genome directly. This led to major advances in model organism research and in human studies, leading to new scientific discoveries.

GeneNetwork is a combined database and open-source bioinformatics data analysis software resource for systems genetics. This resource is used to study gene regulatory networks that link DNA sequence differences to corresponding differences in gene and protein expression and to variation in traits such as health and disease risk. Data sets in GeneNetwork are typically made up of large collections of genotypes and phenotypes from groups of individuals, including humans, strains of mice and rats, and organisms as diverse as Drosophila melanogaster, Arabidopsis thaliana, and barley. The inclusion of genotypes makes it practical to carry out web-based gene mapping to discover those regions of genomes that contribute to differences among individuals in mRNA, protein, and metabolite levels, as well as differences in cell function, anatomy, physiology, and behavior.

<span class="mw-page-title-main">Plant breeding</span> Humans changing traits, ornamental/crops

Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of applications. The most frequently addressed agricultural traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules and ease of processing.

Molecular breeding is the application of molecular biology tools, often in plant breeding and animal breeding. In the broad sense, molecular breeding can be defined as the use of genetic manipulation performed at the level of DNA to improve traits of interest in plants and animals, and it may also include genetic engineering or gene manipulation, molecular marker-assisted selection, and genomic selection. More often, however, molecular breeding implies molecular marker-assisted breeding (MAB) and is defined as the application of molecular biotechnologies, specifically molecular markers, in combination with linkage maps and genomics, to alter and improve plant or animal traits on the basis of genotypic assays.

In genetics and genetic epidemiology, a phenome-wide association study, abbreviated PheWAS, is a study design in which the association between single-nucleotide polymorphisms or other types of DNA variants is tested across a large number of different phenotypes. The aim of PheWAS studies is to examine the causal linkage between known sequence differences and any type of trait, including molecular, biochemical, cellular, and especially clinical diagnoses and outcomes. It is a complementary approach to the genome-wide association study, or GWAS, methodology. A fundamental difference between GWAS and PheWAS designs is the direction of inference: in a PheWAS it is from exposure to many possible outcomes, that is, from SNPs to differences in phenotypes and disease risk. In a GWAS, the polarity of analysis is from one or a few phenotypes to many possible DNA variants. The approach has proven useful in rediscovering previously reported genotype-phenotype associations, as well as in identifying new ones.

<span class="mw-page-title-main">Carolyn Lawrence-Dill</span> American plant biologist

Carolyn Joy Lawrence-Dill is an American plant biologist and academic administrator. She develops computational systems and tools to help plant science researchers use plant genetics and genomics data for basic biology applications that advance plant breeding.

Daniel Richard Masys is an American biotechnologist and academic. He is an Affiliate Professor of Biomedical and Health Informatics at the University of Washington.

References

  1. Bilder, R.M.; Sabb, F.W.; Cannon, TD; London, ED; Jentsch, JD; Parker, DS; Poldrack, RA; Evans, C; Freimer, NB (2009). "Phenomics: The systematic study of phenotypes on a genome-wide scale". Neuroscience. 164 (1): 30–42. doi:10.1016/j.neuroscience.2009.01.027. PMC   2760679 . PMID   19344640.
  2. Jin, Li (2021-02-01). "Welcome to the Phenomics Journal". Phenomics. 1 (1): 1–2. doi: 10.1007/s43657-020-00009-4 . ISSN   2730-5848. PMC   9584128 . PMID   36939790.
  3. Guanghui, Yu; Xuanjun, Fang (2009). "Concept of phenomics and its development in plant science". Molecular Plant Breeding. ISSN   1672-416X via The Food and Agriculture Organization (FAO) is a specialized agency of the United Nations.
  4. 1 2 Houle, David; Govindaraju, Diddahally R.; Omholt, Stig (2010). "Phenomics: the next challenge". Nature Reviews Genetics. 11 (12): 855–866. doi:10.1038/nrg2897. PMID   21085204. S2CID   14752610.
  5. O'Leary, M. A.; Bloch, J. I.; Flynn, J. J.; Gaudin, T. J.; Giallombardo, A.; Giannini, N. P.; Goldberg, S. L.; Kraatz, B. P.; Luo, Z.-X.; Meng, J.; Ni, X.; Novacek, M. J.; Perini, F. A.; Randall, Z.; Rougier, G. W.; Sargis, E. J.; Silcox, M. T.; Simmons, N. B.; Spaulding, M.; Velazco, P. M.; Weksler, M.; Wible, J. R.; Cirranello, A. L. (2013). "The placental mammal ancestor and the post-K-Pg radiation of placentals". Science. 332 (6120): 662–667. Bibcode:2013Sci...339..662O. doi:10.1126/science.1229237. hdl: 11336/7302 . PMID   23393258. S2CID   206544776.
  6. The TerraRef Gantry System of the University of Arizona on the fields of the Maricopa Research Center
  7. Bao, Yin; Zarecor, Scott; Shah, Dylan; Tuel, Taylor; Campbell, Darwin A.; Chapman, Antony V. E.; Imberti, David; Kiekhaefer, Daniel; Imberti, Henry; Lübberstedt, Thomas; Yin, Yanhai; Nettleton, Dan; Lawrence-Dill, Carolyn J.; Whitham, Steven A.; Tang, Lie; Howell, Stephen H. (23 October 2019). "Assessing plant performance in the Enviratron". Plant Methods. 15 (1): 117. doi: 10.1186/s13007-019-0504-y . PMC   6806530 . PMID   31660060.
  8. Papoutsoglou, Evangelia A.; Faria, Daniel; Arend, Daniel; Arnaud, Elizabeth; Athanasiadis, Ioannis N.; Chaves, Inês; Coppens, Frederik; Cornut, Guillaume; Costa, Bruno V.; Ćwiek‐Kupczyńska, Hanna; Droesbeke, Bert; Finkers, Richard; Gruden, Kristina; Junker, Astrid; King, Graham J.; Krajewski, Paweł; Lange, Matthias; Laporte, Marie-Angélique; Michotey, Célia; Oppermann, Markus; Ostler, Richard; Poorter, Hendrik; Ramı́rez‐Gonzalez, Ricardo; Ramšak, Živa; Reif, Jochen C.; Rocca‐Serra, Philippe; Sansone, Susanna-Assunta; Scholz, Uwe; Tardieu, François; Uauy, Cristobal; Usadel, Björn; Visser, Richard G. F.; Weise, Stephan; Kersey, Paul J.; Miguel, Célia M.; Adam‐Blondon, Anne-Françoise; Pommier, Cyril (2020). "Enabling reusability of plant phenomic datasets with MIAPPE 1.1". New Phytologist. 227 (1): 260–273. doi: 10.1111/nph.16544 . PMC   7317793 . PMID   32171029.
  9. Digital Imaging of Root Traits (DIRT)
  10. PlantIt: free image-based plant phenotyping automation in the cloud
  11. PlantCV
  12. IPPN - International Plant Phenotyping Network
  13. NAPPN - North American Plant Phenotyping Network
  14. EMPHASIS

Further reading