Photoimageable thick-film technology

Last updated
Progress for photoimageable thick film Progress for photoimageable thick film.jpg
Progress for photoimageable thick film

Photoimageable thick-film technology [1] is a combination of conventional thick film technology with elements of thin film technology, and it provides a low cost solution to producing high quality microwave circuits. The ability to directly photoimage the printed layers means that the technology can provide the high line and gap resolution required by high frequency planar components. [2] [3] It provides a feasible fabrication process to produce circuits operating at microwave and millimetre-wave frequencies. Circuits made using this technology meet the modern requirements for high density packaging, whilst yielding the high quality components required for very high frequency applications, including wireless communication, radar and measurement systems.

Contents

This technology also enables both single-layer and multi-layer filters to be produced conveniently. Recent research work [4] has investigated the combination of conventional thick film and fine line photoimageable technologies, in order to accommodate fine pitch and high density applications on the ceramic substrates. Furthermore, previous work [5] has shown that this technology is capable of realizing the circuit quality necessary for high performance microwave components.

Benefits of choosing this structure

Comparison of thick film processes for fine line Comparison of thick film processes for fine line.jpg
Comparison of thick film processes for fine line

Edge coupled band-pass filters were chosen for this study as they are one of the most common and useful microwave and millimetre-wave planar components. The filter performance is based on the coupling between the resonant sections and controlled by the size of the gap. [6] This characteristic makes edge coupled band-pass filters very sensitive to fabrication errors.

Another reason of choosing this structure in a multi-layer form is due to limitation on the structure when it has been fabricated on a single layer. The gap between the two resonant structures becomes very small and cannot easily be fabricated due to the limitations of low-cost fabrication technologies. In multi-layer circuits, the coupling between resonant sections is achieved by overlapping conductors which are separated by a thin dielectric layer. However, to some extent the problem of fabricating small gaps has been exchanged for that of achieving high alignment between the conductor layers. Normally a modern mask aligner will be needed to achieve the required degree of resolution.

Application

The target market for photoimageable thick film pastes is the thick film (hybrid) circuit and component industries plus LTCC and HTCC activities. The technology allows extremely fine lines and structures to be produced with minimal investment in a simple process and use of special paste materials. Most of the production steps needed are already used by the industry. Only two extra production steps are required. No extra clean room requirements are needed. No special lighting is required. No chemicals are required. This can be advantageous for sections of the thick film circuits community which would allow them to offer greater added value, fine line products to compete with other thick film, thin film and PCB technologies.

Thick films for microwave applications

Advantages of 'conventional' thick film over thin film

Related Research Articles

Microstrip antenna

In telecommunication, a microstrip antenna usually means an antenna fabricated using photolithographic techniques on a printed circuit board (PCB). It is a kind of internal antenna. They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patch of metal foil of various shapes on the surface of a PCB, with a metal foil ground plane on the other side of the board. Most microstrip antennas consist of multiple patches in a two-dimensional array. The antenna is usually connected to the transmitter or receiver through foil microstrip transmission lines. The radio frequency current is applied between the antenna and ground plane. Microstrip antennas have become very popular in recent decades due to their thin planar profile which can be incorporated into the surfaces of consumer products, aircraft and missiles; their ease of fabrication using printed circuit techniques; the ease of integrating the antenna on the same board with the rest of the circuit, and the possibility of adding active devices such as microwave integrated circuits to the antenna itself to make active antennas

Microstrip

Microstrip is a type of electrical transmission line which can be fabricated with any technology where a conductor is separated from a ground plane by a dielectric layer known as the substrate. Microstriplines are used to convey microwave-frequency signals.

Hybrid integrated circuit Miniature electronic circuit combining different semiconductor devices and passive components on a substrate

A hybrid integrated circuit (HIC), hybrid microcircuit, hybrid circuit or simply hybrid is a miniaturized electronic circuit constructed of individual devices, such as semiconductor devices and passive components, bonded to a substrate or printed circuit board (PCB). A PCB having components on a Printed Wiring Board (PWB) is not considered a true hybrid circuit according to the definition of MIL-PRF-38534.

Unbalanced line

In electrical engineering, an unbalanced line is a transmission line, often coaxial cable, whose conductors have unequal impedances with respect to ground; as opposed to a balanced line. Microstrip and single-wire lines are also unbalanced lines.

The spurline is a type of radio-frequency and microwave distributed element filter with band-stop (notch) characteristics, most commonly used with microstrip transmission lines. Spurlines usually exhibit moderate to narrow-band rejection, at about 10% around the central frequency.

Stripline

Stripline is a transverse electromagnetic (TEM) transmission line medium invented by Robert M. Barrett of the Air Force Cambridge Research Centre in the 1950s. Stripline is the earliest form of planar transmission line.

Radio frequency (RF) and microwave filters represent a class of electronic filter, designed to operate on signals in the megahertz to gigahertz frequency ranges. This frequency range is the range used by most broadcast radio, television, wireless communication, and thus most RF and microwave devices will include some kind of filtering on the signals transmitted or received. Such filters are commonly used as building blocks for duplexers and diplexers to combine or separate multiple frequency bands.

Radio-frequency microelectromechanical system

A radio-frequency microelectromechanical system (RFMEMS) is a microelectromechanical system with electronic components comprising moving sub-millimeter-sized parts that provide radio-frequency (RF) functionality. RF functionality can be implemented using a variety of RF technologies. Besides RF MEMS technology, III-V compound semiconductor, ferrite, ferroelectric, silicon-based semiconductor, and vacuum tube technology are available to the RF designer. Each of the RF technologies offers a distinct trade-off between cost, frequency, gain, large-scale integration, lifetime, linearity, noise figure, packaging, power handling, power consumption, reliability, ruggedness, size, supply voltage, switching time and weight.

A dielectric resonator antenna (DRA) is a radio antenna mostly used at microwave frequencies and higher, that consists of a block of ceramic material of various shapes, the dielectric resonator, mounted on a metal surface, a ground plane. Radio waves are introduced into the inside of the resonator material from the transmitter circuit and bounce back and forth between the resonator walls, forming standing waves. The walls of the resonator are partially transparent to radio waves, allowing the radio power to radiate into space.

Integrated passive devices

Integrated Passive Devices (IPD's) "or Integrated Passive Components (IPC's) or Embedded Passive Components" are electronic components where resistors (R), capacitors (C), inductors(L)/coils/chokes, microstriplines, impedance matching elements, baluns or any combinations of them are integrated in the same package or on the same substrate. Sometimes integrated passives can also be called as embedded passives, and still the difference between integrated and embedded passives is technically unclear. In both cases passives are realised in between dielectric layers or on the same substrate.

Distributed-element filter Type of electronic filter circuit

A distributed-element filter is an electronic filter in which capacitance, inductance, and resistance are not localised in discrete capacitors, inductors, and resistors as they are in conventional filters. Its purpose is to allow a range of signal frequencies to pass, but to block others. Conventional filters are constructed from inductors and capacitors, and the circuits so built are described by the lumped element model, which considers each element to be "lumped together" at one place. That model is conceptually simple, but it becomes increasingly unreliable as the frequency of the signal increases, or equivalently as the wavelength decreases. The distributed-element model applies at all frequencies, and is used in transmission-line theory; many distributed-element components are made of short lengths of transmission line. In the distributed view of circuits, the elements are distributed along the length of conductors and are inextricably mixed together. The filter design is usually concerned only with inductance and capacitance, but because of this mixing of elements they cannot be treated as separate "lumped" capacitors and inductors. There is no precise frequency above which distributed element filters must be used but they are especially associated with the microwave band.

Metamaterial antenna

Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.

Waveguide filter Electronic filter that is constructed with waveguide technology

A waveguide filter is an electronic filter constructed with waveguide technology. Waveguides are hollow metal conduits inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass, while others are rejected. Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting.

Substrate integrated waveguide A synthetic rectangular electromagnetic waveguide

A Substrate integrated waveguide (SIW) is a synthetic rectangular electromagnetic waveguide formed in a dielectric substrate by densely arraying metallized posts or via-holes which connect the upper and lower metal plates of the substrate. The waveguide can be easily fabricated with low-cost mass-production using through-hole techniques where the post walls consists of via fences. SIW is known to have similar guided wave and mode characteristics to conventional rectangular waveguide with equivalent guide wavelength.

A via fence, also called a picket fence, is a structure used in planar electronic circuit technologies to improve isolation between components which would otherwise be coupled by electromagnetic fields. It consists of a row of via holes which, if spaced close enough together, form a barrier to electromagnetic wave propagation of slab modes in the substrate. Additionally if radiation in the air above the board is also to be suppressed, then a strip pad with via fence allows a shielding can to be electrically attached to the top side, but electrically behave as if it continued through the PCB.

Planar transmission line Transmission lines with flat ribbon-like conducting or dielectric lines

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections, the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength, these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

Coplanar waveguide type of planar transmission line

Coplanar waveguide is a type of electrical planar transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. On a smaller scale, coplanar waveguide transmission lines are also built into monolithic microwave integrated circuits.

Co-fired ceramic Integrated circuit package made out of fired ceramic material

Co-fired ceramic devices are monolithic, ceramic microelectronic devices where the entire ceramic support structure and any conductive, resistive, and dielectric materials are fired in a kiln at the same time. Typical devices include capacitors, inductors, resistors, transformers, and hybrid circuits. The technology is also used for robust assembly and packaging of electronic components multi-layer packaging in the electronics industry, such as military electronics, MEMS, microprocessor and RF applications.

Air stripline is a form of electrical planar transmission line whereby a conductor in the form of a thin metal strip is suspended between two ground planes. The idea is to make the dielectric essentially air. Mechanical support of the line may be a thin substrate, periodical insulated supports, or the device connectors and other electrical items.

Distributed-element circuit Electrical circuits composed of lengths of transmission lines or other distributed components

Distributed-element circuits are electrical circuits composed of lengths of transmission lines or other distributed components. These circuits perform the same functions as conventional circuits composed of passive components, such as capacitors, inductors, and transformers. They are used mostly at microwave frequencies, where conventional components are difficult to implement.

References

  1. Hibridas Enterprise
  2. D. Stephens, P. R. Young, and I. D. Robertson, "Design and characterization of 180GHz filters in photoimageable thick-film technology", IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 451–454.
  3. C. Y. Ng, M. Chongcheawchamnan, M. S. Aftanasar, I. D. Robertson, and J. Minalgience, "X-band microstrip bandpass filter using photoimageable thick-film materials", IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, 2002, pp. 2209–2212.
  4. R.A. Tacken, D. Mitcan, and J. Nab, "Combining fine line photoimageable with multi-layer thick film for improved circuit density", CICMT Proceedings, 2017.
  5. C.-M. Tsai, and K. C. Gupta, "A generalized model for coupled lines and its applications to two-layer planar circuits", IEEE Transactions on Microwave Theory & Techniques, Vol. 40, No. 12, 1992.
  6. [2] T. C. Edwards, and M. B. Steer, Foundation of Interconnect and Microstrip Design, J. Wiley & Sons, 2000.