Photoionization detector

Last updated

A photoionization detector or PID is a type of gas detector.

Contents

Typical photoionization detectors measure volatile organic compounds and other gases in concentrations from sub parts per billion to 10 000 parts per million (ppm). The photoionization detector is an efficient and inexpensive detector for many gas and vapor analytes. PIDs produce instantaneous readings, operate continuously, and are commonly used as detectors for gas chromatography or as hand-held portable instruments. Hand-held, battery-operated versions are widely used in military, industrial, and confined working facilities for health and safety. Their primary use is for monitoring possible worker exposure to volatile organic compounds (VOCs) such as solvents, fuels, degreasers, plastics and their precursors, heat transfer fluids, lubricants, etc. during manufacturing processes and waste handling.

Portable PIDs are used for monitoring:

Principle

In a photoionization detector high-energy photons, typically in the vacuum ultraviolet (VUV) range, break molecules into positively charged ions. As compounds enter the detector they are bombarded by high-energy UV photons and are ionized when they absorb the UV light, resulting in ejection of electrons and the formation of positively charged ions. The ions produce an electric current, which is the signal output of the detector. The greater the concentration of the component, the more ions are produced, and the greater the current. The current is amplified and displayed on an ammeter or digital concentration display. The ions can undergo numerous reactions including reaction with oxygen or water vapor, rearrangement, and fragmentation. A few of them may recapture an electron within the detector to reform their original molecules; however only a small portion of the airborne analytes are ionized to begin with so the practical impact of this (if it occurs) is usually negligible. Thus, PIDs are non-destructive and can be used before other sensors in multiple-detector configurations.

The PID will only respond to components that have ionization energies similar to or lower than the energy of the photons produced by the PID lamp. As stand-alone detectors, PIDs are broad band and not selective, as these may ionize everything with an ionization energy less than or equal to the lamp photon energy. The more common commercial lamps have photons energy upper limits of approximately 8.4 eV, 10.0 eV, 10.6 eV, and 11.7 eV. The major and minor components of clean air all have ionization energies above 12.0 eV and thus do not interfere significantly in the measurement of VOCs, which typically have ionization energies below 12.0 eV. [1]

Lamp types and detectable compounds

PID lamp photon emissions depend on the type of fill gas (which defines the light energy produced) and the lamp window, which affects the energy of photons that can exit the lamp:

Main photon energyFill gasWindow materialComments
11.7 eVArLiFShort-lived
10.6 eVKrMgF2Most robust
10.2 eVH2MgF2
10.0 eVKrCaF2
9.6 eVXeBaF2
8.4 eVXeAl2O3

The 10.6 eV lamp is the most common because it has strong output, has the longest life and responds to many compounds. In approximate order from most sensitive to least sensitive, these compounds include:

Applications

The first commercial application of photoionization detection was in 1973 as a hand-held instrument for the purpose of detecting leaks of VOCs, specifically vinyl chloride monomer (VCM), at a chemical manufacturing facility. The photoionization detector was applied to gas chromatography (GC) three years later, in 1976. [2] A PID is highly selective when coupled with a chromatographic technique or a pre-treatment tube such as a benzene-specific tube. Broader cuts of selectivity for easily ionized compounds can be obtained by using a lower energy UV lamp. This selectivity can be useful when analyzing mixtures in which only some of the components are of interest.

The PID is usually calibrated using isobutylene, and other analytes may produce a relatively greater or lesser response on a concentration basis. Although many PID manufacturers provide the ability to program an instrument with a correction factor for quantitative detection of a specific chemical, the broad selectivity of the PID means that the user must know the identity of the gas or vapor species to be measured with high certainty. [1] If a correction factor for benzene is entered into the instrument, but hexane vapor is measured instead, the lower relative detector response (higher correction factor) for hexane would lead to underestimation of the actual airborne concentration of hexane.

Matrix gas effects

With a gas chromatograph, filter tube, or other separation technique upstream of the PID, matrix effects are generally avoided because the analyte enters the detector isolated from interfering compounds.

Response to stand-alone PIDs is generally linear from the ppb range up to at least a few thousand ppm. In this range, response to mixtures of components is also linearly additive. [1] At the higher concentrations, response gradually deviates from linearity because of recombination of oppositely charged ions formed in close proximity and/or 2) absorption of UV light without ionization. [1] The signal produced by a PID may be quenched when measuring in high humidity environments, [3] or when a compound such as methane is present in high concentrations of ≥1% by volume [4] This attenuation is due to the ability of water, methane, and other compounds with high ionization energies to absorb the photons emitted by the UV lamp without leading to the production of an ion current. This reduces the number of energetic photons available to ionize target analytes.

Related Research Articles

<span class="mw-page-title-main">Ultraviolet–visible spectroscopy</span> Range of spectroscopic analysis

Ultraviolet (UV) spectroscopy or ultraviolet–visible (UV-VIS) spectrophotometry refers to absorption spectroscopy or reflectance spectroscopy in part of the ultraviolet and the full, adjacent visible regions of the electromagnetic spectrum. Being relatively inexpensive and easily implemented, this methodology is widely used in diverse applied and fundamental applications. The only requirement is that the sample absorb in the UV-Vis region, i.e. be a chromophore. Absorption spectroscopy is complementary to fluorescence spectroscopy. Parameters of interest, besides the wavelength of measurement, are absorbance (A) or transmittance (%T) or reflectance (%R), and its change with time.

<span class="mw-page-title-main">Geiger–Müller tube</span> Part of a Geiger counter

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

<span class="mw-page-title-main">Mass spectrometry</span> Analytical technique based on determining mass to charge ratio of ions

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Ion source</span> Device that creates charged atoms and molecules (ions)

An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.

<span class="mw-page-title-main">Gas chromatography</span> Type of chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

<span class="mw-page-title-main">Gas chromatography–mass spectrometry</span> Analytical method

Gas chromatography–mass spectrometry (GC–MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC–MS include drug detection, fire investigation, environmental analysis, explosives investigation, food and flavor analysis, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC–MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.

<span class="mw-page-title-main">Chemical ionization</span> Ionization technique used in mass [[spectroscopy]]

Chemical ionization (CI) is a soft ionization technique used in mass spectrometry. This was first introduced by Burnaby Munson and Frank H. Field in 1966. This technique is a branch of gaseous ion-molecule chemistry. Reagent gas molecules are ionized by electron ionization to form reagent ions, which subsequently react with analyte molecules in the gas phase to create analyte ions for analysis by mass spectrometry. Negative chemical ionization (NCI), charge-exchange chemical ionization, atmospheric-pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) are some of the common variants of the technique. CI mass spectrometry finds general application in the identification, structure elucidation and quantitation of organic compounds as well as some utility in biochemical analysis. Samples to be analyzed must be in vapour form, or else, must be vapourized before introduction into the source.

<span class="mw-page-title-main">Liquid chromatography–mass spectrometry</span> Analytical chemistry technique

Liquid chromatography–mass spectrometry (LC–MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography with the mass analysis capabilities of mass spectrometry (MS). Coupled chromatography – MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides spectral information that may help to identify each separated component. MS is not only sensitive, but provides selective detection, relieving the need for complete chromatographic separation. LC–MS is also appropriate for metabolomics because of its good coverage of a wide range of chemicals. This tandem technique can be used to analyze biochemical, organic, and inorganic compounds commonly found in complex samples of environmental and biological origin. Therefore, LC–MS may be applied in a wide range of sectors including biotechnology, environment monitoring, food processing, and pharmaceutical, agrochemical, and cosmetic industries. Since the early 2000s, LC–MS has also begun to be used in clinical applications.

<span class="mw-page-title-main">Electron capture detector</span> Device for detecting atoms and molecules in a gas

An electron capture detector (ECD) is a device for detecting atoms and molecules in a gas through the attachment of electrons via electron capture ionization. The device was invented in 1957 by James Lovelock and is used in gas chromatography to detect trace amounts of chemical compounds in a sample.

<span class="mw-page-title-main">Flame ionization detector</span> Type of gas detector used in gas chromatography

A flame ionization detector (FID) is a scientific instrument that measures analytes in a gas stream. It is frequently used as a detector in gas chromatography. The measurement of ion per unit time make this a mass sensitive instrument. Standalone FIDs can also be used in applications such as landfill gas monitoring, fugitive emissions monitoring and internal combustion engine emissions measurement in stationary or portable instruments.

A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.

Sample preparation for mass spectrometry is used for the optimization of a sample for analysis in a mass spectrometer (MS). Each ionization method has certain factors that must be considered for that method to be successful, such as volume, concentration, sample phase, and composition of the analyte solution. Quite possibly the most important consideration in sample preparation is knowing what phase the sample must be in for analysis to be successful. In some cases the analyte itself must be purified before entering the ion source. In other situations, the matrix, or everything in the solution surrounding the analyte, is the most important factor to consider and adjust. Often, sample preparation itself for mass spectrometry can be avoided by coupling mass spectrometry to a chromatography method, or some other form of separation before entering the mass spectrometer. In some cases, the analyte itself must be adjusted so that analysis is possible, such as in protein mass spectrometry, where usually the protein of interest is cleaved into peptides before analysis, either by in-gel digestion or by proteolysis in solution.

<span class="mw-page-title-main">Proton-transfer-reaction mass spectrometry</span>

Proton-transfer-reaction mass spectrometry (PTR-MS) is an analytical chemistry technique that uses gas phase hydronium reagent ions which are produced in an ion source. PTR-MS is used for online monitoring of volatile organic compounds (VOCs) in ambient air and was developed in 1995 by scientists at the Institut für Ionenphysik at the Leopold-Franzens University in Innsbruck, Austria. A PTR-MS instrument consists of an ion source that is directly connected to a drift tube and an analyzing system. Commercially available PTR-MS instruments have a response time of about 100 ms and reach a detection limit in the single digit pptv or even ppqv region. Established fields of application are environmental research, food and flavor science, biological research, medicine, security, cleanroom monitoring, etc.

<span class="mw-page-title-main">Desorption atmospheric pressure photoionization</span>

Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry that uses hot solvent vapor for desorption in conjunction with photoionization. Ambient Ionization techniques allow for direct analysis of samples without pretreatment. The direct analysis technique, such as DAPPI, eliminates the extraction steps seen in most nontraditional samples. DAPPI can be used to analyze bulkier samples, such as, tablets, powders, resins, plants, and tissues. The first step of this technique utilizes a jet of hot solvent vapor. The hot jet thermally desorbs the sample from a surface. The vaporized sample is then ionized by the vacuum ultraviolet light and consequently sampled into a mass spectrometer. DAPPI can detect a range of both polar and non-polar compounds, but is most sensitive when analyzing neutral or non-polar compounds. This technique also offers a selective and soft ionization for highly conjugated compounds.

Atmospheric pressure laser ionization is an atmospheric pressure ionization method for mass spectrometry (MS). Laser light in the UV range is used to ionize molecules in a resonance-enhanced multiphoton ionization (REMPI) process. It is a selective and sensitive ionization method for aromatic and polyaromatic compounds. Atmospheric photoionization is the latest in development of atmospheric ionization methods.

RAE Systems, Inc., or RAE System by Honeywell, is a provider of wireless, gas and radiation detection instruments and systems that enable real-time safety and security threat detection to help mitigate risk, and protect workers, contractors, the public, and assets. RAE Systems is located in San Jose, California. The company was founded in 1991 by Robert I. Chen and Peter Hsi.

An excimer lamp is a source of ultraviolet light based on spontaneous emission of excimer (exciplex) molecules.

<span class="mw-page-title-main">Atmospheric pressure photoionization</span> Soft ionization method

Atmospheric pressure photoionization (APPI) is a soft ionization method used in mass spectrometry (MS) usually coupled to liquid chromatography (LC). Molecules are ionized using a vacuum ultraviolet (VUV) light source operating at atmospheric pressure, either by direct absorption followed by electron ejection or through ionization of a dopant molecule that leads to chemical ionization of target molecules. The sample is usually a solvent spray that is vaporized by nebulization and heat. The benefit of APPI is that it ionizes molecules across a broad range of polarity and is particularly useful for ionization of low polarity molecules for which other popular ionization methods such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are less suitable. It is also less prone to ion suppression and matrix effects compared to ESI and APCI and typically has a wide linear dynamic range. The application of APPI with LC/MS is commonly used for analysis of petroleum compounds, pesticides, steroids, and drug metabolites lacking polar functional groups and is being extensively deployed for ambient ionization particularly for explosives detection in security applications.

The Polyarc reactor is a scientific tool for the measurement of organic molecules. It is paired with a flame ionization detector (FID) in a gas chromatograph (GC) to improve the sensitivity of the FID and give a uniform detector response for all organic molecules (GC-Polyarc/FID).

<span class="mw-page-title-main">Resonance ionization</span> Process to excite an atom beyond its ionization potential to form an ion

Resonance ionization is a process in optical physics used to excite a specific atom beyond its ionization potential to form an ion using a beam of photons irradiated from a pulsed laser light. In resonance ionization, the absorption or emission properties of the emitted photons are not considered, rather only the resulting excited ions are mass-selected, detected and measured. Depending on the laser light source used, one electron can be removed from each atom so that resonance ionization produces an efficient selectivity in two ways: elemental selectivity in ionization and isotopic selectivity in measurement.

References

  1. 1 2 3 4 Haag, W.R. and Wrenn, C.: The PID Handbook - Theory and Applications of Direct-Reading Photoionization Detectors (PIDs), 2nd. Ed., San Jose, CA: RAE Systems Inc. (2006)
  2. Driscoll, J.N., and J.B. Clarici: Ein neuer Photoionisationsdetektor für die Gas-Chromatographie. Chromatographia, 9:567-570 (1976).
  3. Smith, P.A., Jackson Lepage, C., Harrer, K.L., and P.J. Brochu: Handheld photoionization instruments for quantitative detection of sarin vapor and for rapid qualitative screening of contaminated objects. J. Occ. Env. Hyg. 4:729-738 (2007).
  4. Nyquist, J.E., Wilson, D.L., Norman, L.A., and R.B. Gammage: Decreased sensitivity of photoionization detector total organic vapor detectors in the presence of methane. Am. Ind. Hyg. Assoc. J., 51:326-330 (1990).