Pin Index Safety System

Last updated
Pin index dimensions Pin index dimensions.JPG
Pin index dimensions

The Pin Index Safety System (PISS) is a means of connecting high pressure cylinders containing medical gases to a regulator or other utilization equipment. It uses geometric features on the valve and yoke to prevent mistaken use of the wrong gas. This system is widely used worldwide for anesthesia machines, portable oxygen administration sets, and inflation gases used in surgery.

Contents

Concept

The pin index safety system uses a face seal between the cylinder valve and the associated yoke clamp. There are two holes in specific positions on the cylinder valve body below the outlet port , in positions associated with the gas mixture, which prevent connection of the cylinder to a yoke or pressure regulator with a mis-matched set of pins. The holes accept pins 4 mm diameter by 6 mm long which are correctly aligned with the holes. [1]

Pin index configurations

Pin numbers Pin numbers.JPG
Pin numbers

Each gas cylinder has a pin configuration to fit its respective gas yoke. Refer to the diagram for pin numbers; dimensions are in millimeters.

International Standards

  • EN ISO 407 : Small medical gas cylinders - Pin-index yoke-type valve connections

The pin index system is a safety system (PISS) designed to ensure the correct gas is filled into the correct cylinder, and that the cylinder will only connect to the correct equipment. The positions of the holes on the cylinder valve correspond with the pins fitted to the yoke attached to the equipment. The pin positions for each medical gas are unique. If an attempt is made to fit the wrong gas cylinder to the yoke a tight seal will not be made, as the pins cannot locate.[ citation needed ]

The system requires a seal between the yoke and valve to prevent leakage. This is called a Bodok seal, and is a moulded rubber washer (or Neoprene) supported by a metal rim. [1]

Bodok seal

Bodok Seal Bodok-seal.jpg
Bodok Seal

The Bodok seal is a specialised washer that ensures a gas-tight seal between the cylinder yoke or regulator of an anaesthetic machine or any medical device requiring a gas supply, and a gas cylinder. It was introduced along with the pin index safety system during the 1950s.

Attachment and detachment of a gas cylinder leads to constant wear and tear, due in part to mechanical distress and to gaseous compression and expansion. Adiabatic effects in rapidly expanding compressed gases can generate very low temperatures, necessitating a sufficiently durable and cold-resistant material such as neoprene. Prior to the introduction of the Bodok seal, the traditional fibre washer would frequently splay and cause leakage or adhere to the regulator, thus requiring the use of pliers and considerable force to remove it.

The Bodok seal consists of a neoprene washer with a peripheral metal reinforcing ring to prevent splaying. The seal is incombustible and resistant to the high pressures imposed upon it by cylinder gases, approximately 2,000 psi (140 bar) in a full cylinder.

Care must be taken when replacing gas cylinders that the Bodok seal does not stick to the cylinder valve face, and is thus 'lost' when the new cylinder is fitted, preventing a gas tight seal.

Bodok seals are also used in emergency oxygen kits used in first aid for underwater diving, but diving regulators used for scuba cylinders generally use a conventional o-ring seal with either a DIN 477 or CGA 850 yoke connector.

Limitations

It is possible to bypass the pin-index system if the pins are removed, damaged or corroded, if extra washers are used, or on some valves with a short face above the orifice, by inverting the gas cylinder. There is one report of the cylinder being painted the wrong colour leading to error. [4] [5] [6] [7]

Alternative systems

Medical gas cylinders larger than size E (679 liters) are more likely to be fitted with threaded connectors. The connections used for larger cylinders vary widely among jurisdictions. One such system are the American CGA fittings. [8] In Europe there are British Standard (BS), German Standard (DIN) and French (AFNOR) connections, and Japan has the Japanese Standard (JIS).

Blanking Plugs

Blanking plugs (dummy cylinder heads) can be inserted into empty yokes to ensure that there is no leak out of the yoke when not in use. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Scuba set</span> Self-contained underwater breathing apparatus

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness by which it is carried, and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge, and in the looser sense, it has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface supplied diving systems, and is allowed by the relevant legislation and code of practice.

<span class="mw-page-title-main">Rebreather</span> Portable apparatus to recycle breathing gas

A rebreather is a breathing apparatus that absorbs the carbon dioxide of a user's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the user. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, eliminating the bubbles produced by an open circuit system and in turn not scaring wildlife being filmed. A rebreather is generally understood to be a portable unit carried by the user. The same technology on a vehicle or non-mobile installation is more likely to be referred to as a life-support system.

<span class="mw-page-title-main">Breathing gas</span> Gas used for human respiration

A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.

<span class="mw-page-title-main">Diving cylinder</span> Cylinder to supply breathing gas for divers

A diving cylinder or diving gas cylinder is a gas cylinder used to store and transport high pressure gas used in diving operations. This may be breathing gas used with a scuba set, in which case the cylinder may also be referred to as a scuba cylinder, scuba tank or diving tank. When used for an emergency gas supply for surface supplied diving or scuba, it may be referred to as a bailout cylinder or bailout bottle. It may also be used for surface-supplied diving or as decompression gas. A diving cylinder may also be used to supply inflation gas for a dry suit or buoyancy compensator. Cylinders provide gas to the diver through the demand valve of a diving regulator or the breathing loop of a diving rebreather.

<span class="mw-page-title-main">Diving regulator</span> Mechanism that controls the pressure of a breathing gas supply for diving

A diving regulator is a pressure regulator that controls the pressure of breathing gas for diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.

<span class="mw-page-title-main">Surface-supplied diving</span> Underwater diving breathing gas supplied from the surface

Surface-supplied diving is diving using equipment supplied with breathing gas using a diver's umbilical from the surface, either from the shore or from a diving support vessel, sometimes indirectly via a diving bell. This is different from scuba diving, where the diver's breathing equipment is completely self-contained and there is no link to the surface. The primary advantages of conventional surface supplied diving are lower risk of drowning and considerably larger breathing gas supply than scuba, allowing longer working periods and safer decompression. Disadvantages are the absolute limitation on diver mobility imposed by the length of the umbilical, encumbrance by the umbilical, and high logistical and equipment costs compared with scuba. The disadvantages restrict use of this mode of diving to applications where the diver operates within a small area, which is common in commercial diving work.

<span class="mw-page-title-main">Anaesthetic machine</span> Medical device used to generate a fresh gas flow for anaesthesia

An anaesthetic machine or anesthesia machine is a medical device used to generate and mix a fresh gas flow of medical gases and inhalational anaesthetic agents for the purpose of inducing and maintaining anaesthesia.

<span class="mw-page-title-main">Nitrous oxide (medication)</span> Gas used as anesthetic and for pain relief

Nitrous oxide, is an inhaled gas used as a pain medication and together with other medications for anesthesia. Common uses include during childbirth, following trauma, and as part of end-of-life care. Onset of effect is typically within half a minute, and the effect lasts for about a minute.

<span class="mw-page-title-main">Gas cylinder</span> Cylindrical container for storing pressurised gas

A gas cylinder is a pressure vessel for storage and containment of gases at above atmospheric pressure. High-pressure gas cylinders are also called bottles. Inside the cylinder the stored contents may be in a state of compressed gas, vapor over liquid, supercritical fluid, or dissolved in a substrate material, depending on the physical characteristics of the contents. A typical gas cylinder design is elongated, standing upright on a flattened bottom end, with the valve and fitting at the top for connecting to the receiving apparatus.

<span class="mw-page-title-main">Oxygen mask</span> Interface between the oxygen delivery system and the human user

An oxygen mask provides a method to transfer breathing oxygen gas from a storage tank to the lungs. Oxygen masks may cover only the nose and mouth or the entire face. They may be made of plastic, silicone, or rubber. In certain circumstances, oxygen may be delivered via a nasal cannula instead of a mask.

<span class="mw-page-title-main">Dräger (company)</span> German manufacturer of breathing equipment

Dräger is a German company based in Lübeck which makes breathing and protection equipment, gas detection and analysis systems, and noninvasive patient monitoring technologies. Customers include hospitals, fire departments and diving companies.

The Compressed Gas Association (CGA) is an American trade association for the industrial and medical gas supply industries.

<span class="mw-page-title-main">Scuba manifold</span> Scuba component used to functionally connect diving cylinders

A scuba manifold is a device incorporating one or more valves and one or more gas outlets with scuba regulator connections, used to connect two or more diving cylinders containing breathing gas, providing a greater amount of gas for longer dive times or deeper dives. An isolation manifold allows the connection between the cylinders to be closed in the case of a leak from one of the cylinders or its valve or regulator, conserving the gas in the other cylinder. Diving with two or more cylinders is often associated with technical diving. Almost all manifold assemblies include one cylinder valve for each cylinder, and the overwhelming majority are for two cylinders.

The American Standard Safety System, or ASSS, is a connection system for gas cylinders with a volume exceeding 25 cubic feet. The connections differ in thread type and size, right and left-handed threading, internal and external threading, and nipple-seat design. This variability reduces the risk of errors such as administering the wrong gas to a patient, or utilizing equipment calibrated for one gas with another. However, as there are only 26 connections for the 62 gases and mixtures recognized by the CGA, connections are not unique.

<span class="mw-page-title-main">Scuba cylinder valve</span> Valve controlling flow of breathing gas into and out of a scuba cylinder

A scuba cylinder valve or pillar valve is a high pressure manually operated screw-down shut off valve fitted to the neck of a scuba cylinder to control breathing gas flow to and from the pressure vessel and to provide a connection with the scuba regulator or filling whip. Cylinder valves are usually machined from brass and finished with a protective and decorative layer of chrome plating. A metal or plastic dip tube or valve snorkel screwed into the bottom of the valve extends into the cylinder to reduce the risk of liquid or particulate contaminants in the cylinder getting into the gas passages when the cylinder is inverted, and blocking or jamming the regulator.

<span class="mw-page-title-main">Mechanism of diving regulators</span> How the mechanisms of diving regulators work

The mechanism of diving regulators is the arrangement of components and function of gas pressure regulators used in the systems which supply breathing gases for underwater diving. Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure, without instability of flow. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment, and the human interface must be comfortable over periods of several hours.

References

  1. 1 2 3 4 5 6 7 Srivastava, Uma (2013). "Anaesthesia gas supply: Gas cylinders". Indian Journal of Anaesthesia. 57 (5): 500–506. doi:10.4103/0019-5049.120147. PMC   3821267 . PMID   24249883.
  2. 1 2 3 4 5 6 7 8 "Attaching Therapy Equipment: Pin Index Safety System" (PDF). Medical Gases and Safety Systems: CRC 330. Cardiorespiratory Care, University of South Alabama. Retrieved 12 August 2017.
  3. 1 2 3 Dosch, Michael P.; Tharp, Darin. "Supply system: Gases & electricity". The Anesthesia Gas Machine. University of Detroit. Retrieved 12 August 2017.
  4. Naithani, Udita; Betkekar, Sneha Arun; Verma, Devendra; Gehlot, Ravindra K; Sundararaj, Rajkumar (1 October 2016). "Pin index safety system and color coding: is it enough?". Ain-Shams Journal of Anaesthesiology. 9 (4): 626. doi:10.4103/1687-7934.198257. S2CID   136526015.
  5. Healy, Thomas EJ; Knight, Paul R. (31 October 2003). Wylie Churchill-Davidson's A Practice of Anesthesia 7th Edition. CRC Press. ISBN   9780340731307 . Retrieved 13 August 2017.
  6. Goho, C.; Kittle, P. (July 1991). "Override of an N2O/O2 machine fail-safe mechanism: case report" (PDF). Pediatric Dentistry. 13 (4): 234–235. ISSN   0164-1263. PMID   1886828.
  7. Rawstron, R. E.; McNeill, T. D. (1 August 1962). "Pin Index System". British Journal of Anaesthesia. 34 (8): 591–592. doi: 10.1093/bja/34.8.591 . ISSN   0007-0912 . Retrieved 13 August 2017.
  8. staff. "CGA Fitting Reference". www.concoa.com. Retrieved 12 August 2017.
  9. Davey, Andrew; Diba, Ali (2012). "4". Ward's anaesthetic equipment. Davey, Andrew J., Diba, Ali., Ward, C. S. (Crispian Stanley). (6th ed.). Edinburgh: Elsevier. p. 69. ISBN   9780702030949. OCLC   802047752.