Piston motion equations

Last updated

The reciprocating motion of a non-offset piston connected to a rotating crank through a connecting rod (as would be found in internal combustion engines) can be expressed by equations of motion. This article shows how these equations of motion can be derived using calculus as functions of angle (angle domain) and of time (time domain).

Contents

Crankshaft geometry

The geometry of the system consisting of the piston, rod and crank is represented as shown in the following diagram:

Diagram showing geometric layout of piston pin, crank pin and crank center Piston motion geometry.png
Diagram showing geometric layout of piston pin, crank pin and crank center

Definitions

From the geometry shown in the diagram above, the following variables are defined:

rod length (distance between piston pin and crank pin)
crank radius (distance between crank center and crank pin, i.e. half stroke)
crank angle (from cylinder bore centerline at TDC)
piston pin position (distance upward from crank center along cylinder bore centerline)


The following variables are also defined:

piston pin velocity (upward from crank center along cylinder bore centerline)
piston pin acceleration (upward from crank center along cylinder bore centerline)
crank angular velocity (in the same direction/sense as crank angle )

Angular velocity

The frequency (Hz) of the crankshaft's rotation is related to the engine's speed (revolutions per minute) as follows:

So the angular velocity (radians/s) of the crankshaft is:

Triangle relation

As shown in the diagram, the crank pin, crank center and piston pin form triangle NOP.
By the cosine law it is seen that:

where and are constant and varies as changes.

Equations with respect to angular position (angle domain)

Angle domain equations are expressed as functions of angle.

Deriving angle domain equations

The angle domain equations of the piston's reciprocating motion are derived from the system's geometry equations as follows.

Position (geometry)

Position with respect to crank angle (from the triangle relation, completing the square, utilizing the Pythagorean identity, and rearranging):

Velocity

Velocity with respect to crank angle (take first derivative, using the chain rule):

Acceleration

Acceleration with respect to crank angle (take second derivative, using the chain rule and the quotient rule):

Non Simple Harmonic Motion

The angle domain equations above show that the motion of the piston (connected to rod and crank) is not simple harmonic motion, but is modified by the motion of the rod as it swings with the rotation of the crank. This is in contrast to the Scotch Yoke which directly produces simple harmonic motion.

Example graphs

Example graphs of the angle domain equations are shown below.

Equations with respect to time (time domain)

Time domain equations are expressed as functions of time.

Angular velocity derivatives

Angle is related to time by angular velocity as follows:

If angular velocity is constant, then:

and:

Deriving time domain equations

The time domain equations of the piston's reciprocating motion are derived from the angle domain equations as follows.

Position

Position with respect to time is simply:

Velocity

Velocity with respect to time (using the chain rule):

Acceleration

Acceleration with respect to time (using the chain rule and product rule, and the angular velocity derivatives):

Scaling for angular velocity

From the foregoing, you can see that the time domain equations are simply scaled forms of the angle domain equations: is unscaled, is scaled by ω, and is scaled by ω².

To convert the angle domain equations to time domain, first replace A with ωt, and then scale for angular velocity as follows: multiply by ω, and multiply by ω².

Velocity maxima and minima

By definition, the velocity maxima and minima occur at the acceleration zeros (crossings of the horizontal axis).

Crank angle not right-angled

The velocity maxima and minima (see the acceleration zero crossings in the graphs below) depend on rod length and half stroke and do not occur when the crank angle is right angled.

Crank-rod angle not right angled

The velocity maxima and minima do not necessarily occur when the crank makes a right angle with the rod. Counter-examples exist to disprove the statement "velocity maxima and minima only occur when the crank-rod angle is right angled".

Example

For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17615°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60647° and the crank-rod angle is 88.21738°. Clearly, in this example, the angle between the crank and the rod is not a right angle. Summing the angles of the triangle 88.21738° + 18.60647° + 73.17615° gives 180.00000°. A single counter-example is sufficient to disprove the statement "velocity maxima/minima occur when crank makes a right angle with rod".

Example graphs of piston motion

Angle Domain Graphs

The graphs below show the angle domain equations for a constant rod length (6.0") and various values of half stroke (1.8", 2.0", 2.2"). Note in the graphs that L is rod length and R is half stroke..

The vertical axis units are inches for position, [inches/rad] for velocity, [inches/rad2] for acceleration.
The horizontal axis units are crank angle degrees. Graph of Piston Motion.png
The vertical axis units are inches for position, [inches/rad] for velocity, [inches/rad²] for acceleration.
The horizontal axis units are crank angle degrees.

Animation

Below is an animation of the piston motion equations with the same values of rod length and crank radius as in the graphs above

Piston motion animation with the various half strokes from the graph above (using the same color code) TRUE piston3 ANI.gif
Piston motion animation with the various half strokes from the graph above (using the same color code)

Units of Convenience

Note that for the automotive/hotrod use-case the most convenient (used by enthusiasts) unit of length for the piston-rod-crank geometry is the inch, with typical dimensions being 6" (inch) rod length and 2" (inch) crank radius. This article uses units of inch (") for position, velocity and acceleration, as shown in the graphs above.

See also

Related Research Articles

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">Simple harmonic motion</span> To-and-fro periodic motion in science and engineering

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Pseudovector representing an objects change in orientation with respect to time

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Tautochrone curve</span> Concept in geometry

A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.

In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

<span class="mw-page-title-main">Hopf bifurcation</span> Critical point where a periodic solution arises

In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .

In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

In mathematics, the exponential response formula (ERF), also known as exponential response and complex replacement, is a method used to find a particular solution of a non-homogeneous linear ordinary differential equation of any order. The exponential response formula is applicable to non-homogeneous linear ordinary differential equations with constant coefficients if the function is polynomial, sinusoidal, exponential or the combination of the three. The general solution of a non-homogeneous linear ordinary differential equation is a superposition of the general solution of the associated homogeneous ODE and a particular solution to the non-homogeneous ODE. Alternative methods for solving ordinary differential equations of higher order are method of undetermined coefficients and method of variation of parameters.

<span class="mw-page-title-main">Slider-crank linkage</span> Mechanism for conveting rotary motion into linear motion

A slider-crank linkage is a four-link mechanism with three revolute joints and one prisimatic (sliding) joint. The rotation of the crank drives the linear movement of the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank.

References