Plane table

Last updated

A plane table (plain table prior to 1830) [1] is a device used in surveying site mapping, exploration mapping, coastal navigation mapping, and related disciplines to provide a solid and level surface on which to make field drawings, charts and maps. The early use of the name plain table reflected its simplicity and plainness rather than its flatness. [2] "Plane" refers to the table being both flat and levelled (horizontal).

Contents

History

Using a plane table US Army Corps of Engineers Map Making, World War I.jpg
Using a plane table

The earliest mention of a plane table dates to 1551 in Abel Foullon's "Usage et description de l'holomètre", published in Paris. [3] However, since Foullon's description was of a complete, fully developed instrument, it must have been invented earlier. [2]

A brief description was also added to the 1591 edition of Digge's Pantometria. [3] The first mention of the device in English was by Cyprian Lucar in 1590. [1]

Some have credited Johann Richter, also known as Johannes Praetorius, [4] a Nuremberg mathematician, in 1610 [5] with the first plane table, but this appears to be incorrect.

The plane table became a popular instrument for surveying. [2] Its use was widely taught. Some considered it a substandard instrument compared to other devices such as the theodolite, since it was relatively easy to use. [1] By allowing the use of graphical methods rather than mathematical calculations, it could be used by those with less education than other instruments. The addition of a camera to the plane table, as was done from 1890 by Sebastian Finsterwalder in conjunction with a phototheodolite, established photogrammetry in spatial and temporal surveying.(Lokendra prashad Bhatta)

Construction

A plane table with part of the surface cut away to show the mounting on the tripod. The mount allows the table to be levelled. On the table, the alidade with telescopic sight is seen. Plane table cgs00426.jpg
A plane table with part of the surface cut away to show the mounting on the tripod. The mount allows the table to be levelled. On the table, the alidade with telescopic sight is seen.

A plane table consists of a smooth table surface mounted on a sturdy base. The connection between the table top and the base permits one to level the table precisely, using bubble levels, in a horizontal plane. The base, a tripod, is designed to support the table over a specific point on land. By adjusting the length of the legs, one can bring the table level regardless of the roughness of the terrain.

Usage

In use, a plane table is set over a point and brought to precise horizontal level. A drawing sheet is attached to the surface and an alidade is used to sight objects of interest. The alidade, in modern examples of the instrument a rule with a telescopic sight, can then be used to construct a line on the drawing that is in the direction of the object of interest.

By using the alidade as a surveying level, information on the topography of the site can be directly recorded on the drawing as elevations. Distances to the objects can be measured directly or by the use of stadia marks in the telescope of the alidade.

Related Research Articles

<span class="mw-page-title-main">Surveying</span> Science of determining the positions of points and the distances and angles between them

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. A land surveying professional is called a land surveyor. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designed positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

<span class="mw-page-title-main">Theodolite</span> Optical surveying instrument

A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.

<span class="mw-page-title-main">Spirit level</span> Tool to indicate whether a surface is level or plumb

A spirit level, bubble level, or simply a level, is an instrument designed to indicate whether a surface is horizontal (level) or vertical (plumb). Different types of spirit levels may be used by carpenters, stonemasons, bricklayers, other building trades workers, surveyors, millwrights and other metalworkers, and in some photographic or videographic work.

<span class="mw-page-title-main">Alidade</span> Device that allows one to sight a distant object

An alidade or a turning board is a device that allows one to sight a distant object and use the line of sight to perform a task. This task can be, for example, to triangulate a scale map on site using a plane table drawing of intersecting lines in the direction of the object from two or more points or to measure the angle and horizontal distance to the object from some reference point's polar measurement. Angles measured can be horizontal, vertical or in any chosen plane.

<span class="mw-page-title-main">Reticle</span> Aim markings in optical devices, e.g. crosshairs

A reticle, or reticule also known as a graticule, is a pattern of fine lines or markings built into the eyepiece of an optical device such as a telescopic sight, spotting scope, theodolite, optical microscope or the screen of an oscilloscope, to provide measurement references during visual inspections. Today, engraved lines or embedded fibers may be replaced by a digital image superimposed on a screen or eyepiece. Both terms may be used to describe any set of patterns used for aiding visual measurements and calibrations, but in modern use reticle is most commonly used for weapon sights, while graticule is more widely used for non-weapon measuring instruments such as oscilloscope display, astronomic telescopes, microscopes and slides, surveying instruments and other similar devices.

<span class="mw-page-title-main">Inclinometer</span> Instrument used to measure the inclination of a surface relative to local gravity

An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.

<span class="mw-page-title-main">Telescopic sight</span> Sighting device for firearms

A telescopic sight, commonly called a scope informally, is an optical sighting device based on a refracting telescope. It is equipped with some form of a referencing pattern – known as a reticle – mounted in a focally appropriate position in its optical system to provide an accurate point of aim. Telescopic sights are used with all types of systems that require magnification in addition to reliable visual aiming, as opposed to non-magnifying iron sights, reflector (reflex) sights, holographic sights or laser sights, and are most commonly found on long-barrel firearms, particularly rifles, usually via a scope mount. The optical components may be combined with optoelectronics to add night vision or smart device features.

<span class="mw-page-title-main">Tribrach (instrument)</span>

A tribrach is an attachment plate used to attach a surveying instrument, for example a theodolite, total station, GNSS antenna or target to a tripod. A tribrach allows the survey instrument to be repeatedly placed in the same position over a surveying marker point with sub-millimetre precision, by loosening and re-tightening a lock to adjust the instrument base in a horizontal plane.

<span class="mw-page-title-main">Jacob's staff</span> Measurement tool

The term Jacob's staff is used to refer to several things, also known as cross-staff, a ballastella, a fore-staff, a ballestilla, or a balestilha. In its most basic form, a Jacob's staff is a stick or pole with length markings; most staffs are much more complicated than that, and usually contain a number of measurement and stabilization features. The two most frequent uses are:

<span class="mw-page-title-main">Octant (instrument)</span> Measuring instrument used primarily in navigation; type of reflecting instrument

The octant, also called a reflecting quadrant, is a reflecting instrument used in navigation.

<span class="mw-page-title-main">Level (instrument)</span> Optical instrument to verify horizontal points

A level is an optical instrument used to establish or verify points in the same horizontal plane in a process known as levelling. It is used in conjunction with a levelling staff to establish the relative height or levels of objects or marks. It is widely used in surveying and construction to measure height differences and to transfer, measure, and set heights of known objects or marks.

<span class="mw-page-title-main">Stadiametric rangefinding</span>

Stadiametric rangefinding, or the stadia method, is a technique of measuring distances with a telescopic instrument. The term stadia comes from a Greek unit of length Stadion which was the typical length of a sports stadium of the time. Stadiametric rangefinding is used for surveying and in the telescopic sights of firearms, artillery pieces, or tank guns, as well as some binoculars and other optics. It is still widely used in long-range military sniping, but in many professional applications it is being replaced with microwave, infrared, or laser rangefinding methods. Although much easier to use, electronic rangefinders can give away the shooter's position to a well-equipped adversary, and the need for accurate range estimation existed for much longer than electronic rangefinders small and rugged enough to be suitable for military use.

Tacheometry is a system of rapid surveying, by which the horizontal and vertical positions of points on the earth's surface relative to one another are determined without using a chain or tape, or a separate levelling instrument. Instead of the pole formerly employed to mark a point, a staff similar to a level staff is used. This is marked with heights from the base or foot, and is graduated according to the form of tacheometer in use.

<span class="mw-page-title-main">Mariner's astrolabe</span> Nautical navigational instrument

The mariner's astrolabe, also called sea astrolabe, was an inclinometer used to determine the latitude of a ship at sea by measuring the sun's noon altitude (declination) or the meridian altitude of a star of known declination. Not an astrolabe proper, the mariner's astrolabe was rather a graduated circle with an alidade used to measure vertical angles. They were designed to allow for their use on boats in rough water and/or in heavy winds, which astrolabes are ill-equipped to handle. It was invented by the Portuguese people, a nation known for its maritime prowess and dominated the sea for multiple centuries. In the sixteenth century, the instrument was also called a ring.

<span class="mw-page-title-main">Surveyor's wheel</span> Distance-measuring device

A surveyor's wheel, also called a clickwheel, hodometer, waywiser, trundle wheel, measuring wheel or perambulator is a device for measuring distance.

In astronomy, sextants are devices depicting a sixth of a circle, used primarily for measuring the position of stars. There are two types of astronomical sextants, mural instruments and frame-based instruments.

Reflecting instruments are those that use mirrors to enhance their ability to make measurements. In particular, the use of mirrors permits one to observe two objects simultaneously while measuring the angular distance between the objects. While reflecting instruments are used in many professions, they are primarily associated with celestial navigation as the need to solve navigation problems, in particular the problem of the longitude, was the primary motivation in their development.

An Elton's quadrant is a derivative of the Davis quadrant. It adds an index arm and artificial horizon to the instrument. It was invented by John Elton a sea captain who patented his design in 1728 and published details of the instrument in the Philosophical Transactions of the Royal Society in 1732.

Jonathan Sisson was a prominent English instrument maker, the inventor of the modern theodolite with a sighting telescope for surveying, and a leading maker of astronomical instruments.

References

  1. 1 2 3 Turner, Gerard L'E., Scientific Instruments 1500-1900, An Introduction, University of California Press, 1998 ISBN   0-85667-491-5. This is an updated version of his earlier Antique Scientific Instruments Blandford Press Ltd. 1980, ISBN   0-7137-1068-3
  2. 1 2 3 Kiely, Edmond, Surveying Instruments: Their history and classroom use, Bureau of Publications, Teachers College, Columbia University, 1947. page 228
  3. 1 2 Turner, Anthony, Early Scientific Instruments, Europe 1400-1800, Sotheby's Publishing, 1987, ISBN   0-85667-319-6. page 81
  4. Vai, Gian Battista, Caldwell, W. G. E. The Origins of Geology in Italy Google books online copy
  5. Laussedat, Amié, Recherches sur les instruments, les méthodes et le dessin topographiques, Paris, 1898-1902, two volumes