Plant defensin

Last updated
Plant defensin
NaD1 plant defensin 1mr4.png
The plant defensin NaD1 with alpha helix in red, beta strands in blue, disulphide bonds in yellow ( PDB: 1mr4 )
Identifiers
SymbolPlant defensin
Pfam PF00304
Pfam clan CL0054
InterPro IPR008176
PROSITE PDOC00725
SCOP2 1gps / SCOPe / SUPFAM
OPM superfamily 58
OPM protein 1jkz
CDD cd00107
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Plant defensin
NaD1 plant defensin 1mr4.png
The plant defensin NaD1 with alpha helix in red, beta strands in blue, disulphide bonds in yellow ( PDB: 1mr4 )
Identifiers
SymbolPlant defensin
Pfam PF00304
Pfam clan CL0054
InterPro IPR008176
PROSITE PDOC00725
SCOP2 1gps / SCOPe / SUPFAM
OPM superfamily 58
OPM protein 1jkz
CDD cd00107
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Plant defensins (formerly gamma-thionins) are a family of primitive, highly stable, cysteine-rich defensins found in plants that function to defend them against pathogens and parasites. [1] Defensins are integral components of the innate immune system and belong to the ancient superfamily of antimicrobial peptides (AMPs). AMPs are also known as host defense peptides (HDPs), [2] and they are thought to have diverged about 1.4 billion years ago before the evolution of prokaryotes and eukaryotes. [3] [4] They are ubiquitous in almost all plant species, functionally diverse, and their primary structure varies significantly from one species to the next, except for a few cysteine residues, which stabilize the protein structure through disulfide bond formation. [1] Plant defensins usually have a net positive charge due to the abundance of cationic amino acids [5] and are generally divided into two classes. Those in the class II category contain a C-terminal pro-peptide domain of approximately 33 amino acids [5] and are targeted to the vacuole, [6] while the class I defensins lack this domain and mature in the cell wall. Unlike their class I counterparts, class II plant defensins are relatively smaller, and their acidic C-terminal prodomain is hypothesized to contribute to their vacuolar targeting. [7] The first plant defensins were discovered in barley and wheat in 1990 and were initially designated as γ-thionins. [8] [9] In 1995, the name was changed to 'plant defensin' when it was identified that they are evolutionarily unrelated to other thionins and were more similar to defensins from insects and mammals. [10] [11]

Contents

Tissue-specific localization

A large number of defensins were initially isolated from seeds, where they are linked to the defense of germinating seeds against fungal pathogens, [11] but recent advances in bioinformatics and molecular biology techniques have revealed that these peptides are present in other parts of the plant, including flowers and roots. [12] [3] Defensins can be expressed in two ways: constitutively or induced under certain stresses. For example, the defensin AtPDF2.2 from Arabidopsis thaliana is expressed constitutively, [13] while another defensin from the same plant is induced by methyl jasmonate and ethylene. [14]

Structure and evolution

Secondary structure of main types of plant defensins (with cysteines numbered). The 8-cysteine variant is the most common. Alpha helix in red, beta strands in blue, disulphide bonds in yellow. Plant defensin secondary structure.svg
Secondary structure of main types of plant defensins (with cysteines numbered). The 8-cysteine variant is the most common. Alpha helix in red, beta strands in blue, disulphide bonds in yellow.

Plant defensins are members of the protein superfamily called the cis-defensins or CSαβ fold. [15] This superfamily includes arthropod defensins and fungal defensins (but not defensins found in mammals). It also includes several families of proteins not involved in the immune system, including plant S-locus 11 proteins involved in self-incompatibility during reproduction and toxin proteins in scorpion venoms. [16] [17] Defensin proteins are produced as an amphipathic protein precursor with one or two pro-domains that are removed to make the final mature protein. In their mature form, they generally consist of about 45 to 50 amino acid residues. The folded globular structure is characterized by a well-defined 3-stranded anti-parallel beta-sheet and a short alpha-helix. [18] The structure of most plant defensins is cross-linked by four disulfide bridges: three in the core and one linking the N- and C-termini. Some plant defensins have only the core three disulfides, and a few have been found with an additional one (resulting in five total bridges). [19] Two of these bonds, those formed between the α-helix and the last β-strand, are arranged into the Cys-stabilized α-helix β-strand (CSαβ) motif, which play significant roles in their biological activities and stability. [20] [21] The globular structures of plant defensins make them resistant to degradation by proteolytic digestion and stable up to a pH and a temperature range of 10 and 90 degrees Celsius, respectively. [22] [23]

Functions

Plant defensins are a large component of the plant innate immune system. They are regarded as highly promiscuous molecules due to their diverse biological functions. A plant genome typically contains large numbers of different defensin genes [24] that vary in their efficacy against different pathogens and the amount they are expressed in different tissues. [25] In addition to their functions in the immune system, many of these low-molecular-weight peptides have developed additional roles in aiding reproduction and abiotic stress tolerance. [1]

Antimicrobial activity

Plant defensins elicit diverse antimicrobial properties, including antibacterial, [2] and antifungal [26] activities. The modes of action of different defensins depend on the type of organism and specific molecular targets, [27] [2] although their exact mechanisms of action vary. For instance, their antifungal activities, which are their best-characterized property, are attributed to their ability to interact with lipid structures on pathogenic fungi surfaces. These include sphingolipids, [28] glucosyceramide, [29] and phosphatidic acid [30] Apart from their capacity to attack and damage fungal membranes, these peptides have also been extensively researched for their capacity to trigger apoptosis and target other intracellular structures and biomolecules. [31] Plant defensins can spread their lethality by interfering with important developmental and/or regulatory processes, such as the cell cycle, when they perturb or disrupt the membrane of the fungus they target. [32] On the other hand, their ability to induce apoptosis has been linked to the bioaccumulation of reactive oxygen species [33] and the recruitment of specific caspases and caspase-associated proteins/ [34] In mediating their antibacterial mechanisms, plant defensin has been shown to cause loss of cell viability by inducing an unfavorable morphological change in the bacterial target via membrane targeting and permeation. [35] This defensin-membrane interaction has been linked to the presence of the cationic amino acid residues arginine, lysine, and histidine. [36] Furthermore, studies have shown that plant defensin inhibits in vitro protein synthesis in a cell-free system, [37] and their interactions with the DNA of bacterial pathogens have also been documented, hinting that they might have a lethal effect on DNA replication or transcription. [35]

Enzyme inhibition

Some plant defensins have also been identified as enzyme inhibitors of α-amylase or trypsin. [38] [39] [40] It is believed that these are antifeedant activities to deter insects. [39] Typically, molecular modeling analysis of defensin expressed in Vigna unguiculata revealed that defensin inhibits α-amylase in the weevils Acanthoscelides obtectus and Zabrotes subfasciatus by binding via its N-terminal to the active site of the enzyme. [38] Defensins with alpha-amylase-inhibitory activity have also been identified in Sorghum bicolor, [39] [41] suggesting defensins might interfere with carbohydrate metabolism in insect targets. Beyond their ability to inhibit alpha-amylases, defensins also demonstrate inhibitory properties toward trypsin and chymotrypsin. For instance, two defensins from the seeds of Cassia fistula have been documented to inhibit the activity of trypsin, [42] [40] and Capsicum annuum (CanDef-20) defensin has been reported to alter insect metabolism and retard growth in a number of ways, such as upregulation of lipase, serine endopeptidase, glutathione S-transferase, cadherin, alkaline phosphatase, and aminopeptidases and triggering transposon mobilization in Helicoverpa armigera. [43]

Anti-cancer

An additional promiscuous activity of some plant defensins is stopping the growth or disrupting the membranes of cancer cells in in vitro experiments. [44] [45] This interaction is basically facilitated and made stable due to the negatively charged membrane components on cancer cells relative to the positive charge of defensin. [46] [47] Typically, in addition to reducing the viability of melanoma and leukemia cells, Nicotiana alata defensin 1 (NaD1) reportedly induces the death of tumor cells within 30 minutes of contact. [48] This necrotic-like cell killing was facilitated by the binding of NaD1 to the plasma membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2), which resulted in subsequent cell lysis. Defensins from plant origins have also shown potent toxicity towards colon and breast cancer. [49]

Abiotic stress tolerance

Plant defensins are expressed in diverse organelles and tissues in plants, and exposure of plants to specific environmental stresses has been associated with increased expression of defensin, suggesting their function in abiotic stress defense. [50] By means of endoplasmic reticulum adaptive activity, plant defensins AhPDF1.1 and AhPDF1.2 were recently found to exhibit metal (Zn) tolerance in yeast and plants. [51] Also, a defensin from paddy has been documented to sequester cadmium in rice, preventing its intracellular distribution. [7] Overexpression of chickpea defensin gene also confers tolerance to water-deficit stress in Arabidopsis thaliana. [52]

Examples

The following plant proteins belong to this family:

Databases

A database for antimicrobial peptides, including defensins is available: PhytAMP (http://phytamp.hammamilab.org). [57]

Related Research Articles

<span class="mw-page-title-main">Lactoferrin</span> Mammalian protein found in Homo sapiens

Lactoferrin (LF), also known as lactotransferrin (LTF), is a multifunctional protein of the transferrin family. Lactoferrin is a globular glycoprotein with a molecular mass of about 80 kDa that is widely represented in various secretory fluids, such as milk, saliva, tears, and nasal secretions. Lactoferrin is also present in secondary granules of PMNs and is secreted by some acinar cells. Lactoferrin can be purified from milk or produced recombinantly. Human colostrum has the highest concentration, followed by human milk, then cow milk (150 mg/L).

<span class="mw-page-title-main">Defensin</span> Group of antimicrobial peptides

Defensins are small cysteine-rich cationic proteins across cellular life, including vertebrate and invertebrate animals, plants, and fungi. They are host defense peptides, with members displaying either direct antimicrobial activity, immune signaling activities, or both. They are variously active against bacteria, fungi and many enveloped and nonenveloped viruses. They are typically 18-45 amino acids in length, with three or four highly conserved disulphide bonds.

<span class="mw-page-title-main">Antimicrobial peptides</span> Class of peptides that have antimicrobial activity

Antimicrobial peptides (AMPs), also called host defence peptides (HDPs) are part of the innate immune response found among all classes of life. Fundamental differences exist between prokaryotic and eukaryotic cells that may represent targets for antimicrobial peptides. These peptides are potent, broad spectrum antimicrobials which demonstrate potential as novel therapeutic agents. Antimicrobial peptides have been demonstrated to kill Gram negative and Gram positive bacteria, enveloped viruses, fungi and even transformed or cancerous cells. Unlike the majority of conventional antibiotics it appears that antimicrobial peptides frequently destabilize biological membranes, can form transmembrane channels, and may also have the ability to enhance immunity by functioning as immunomodulators.

<span class="mw-page-title-main">Paneth cell</span> Anti-microbial epithelial cell of the small intestine

Paneth cells are cells in the small intestine epithelium, alongside goblet cells, enterocytes, and enteroendocrine cells. Some can also be found in the cecum and appendix. They are located below the intestinal stem cells in the intestinal glands and the large eosinophilic refractile granules that occupy most of their cytoplasm.

<span class="mw-page-title-main">Systemin</span> Plant peptide hormone

Systemin is a plant peptide hormone involved in the wound response in the family Solanaceae. It was the first plant hormone that was proven to be a peptide having been isolated from tomato leaves in 1991 by a group led by Clarence A. Ryan. Since then, other peptides with similar functions have been identified in tomato and outside of the Solanaceae. Hydroxyproline-rich glycopeptides were found in tobacco in 2001 and AtPeps were found in Arabidopsis thaliana in 2006. Their precursors are found both in the cytoplasm and cell walls of plant cells, upon insect damage, the precursors are processed to produce one or more mature peptides. The receptor for systemin was first thought to be the same as the brassinolide receptor but this is now uncertain. The signal transduction processes that occur after the peptides bind are similar to the cytokine-mediated inflammatory immune response in animals. Early experiments showed that systemin travelled around the plant after insects had damaged the plant, activating systemic acquired resistance, now it is thought that it increases the production of jasmonic acid causing the same result. The main function of systemins is to coordinate defensive responses against insect herbivores but they also affect plant development. Systemin induces the production of protease inhibitors which protect against insect herbivores, other peptides activate defensins and modify root growth. They have also been shown to affect plants' responses to salt stress and UV radiation. AtPEPs have been shown to affect resistance against oomycetes and may allow A. thaliana to distinguish between different pathogens. In Nicotiana attenuata, some of the peptides have stopped being involved in defensive roles and instead affect flower morphology.

Cathelicidin antimicrobial peptide (CAMP) is a polypeptide that is primarily stored in the lysosomes of macrophages and polymorphonuclear leukocytes (PMNs); in humans, the CAMP gene encodes the peptide precursor CAP-18, which is processed by proteinase 3-mediated extracellular cleavage into the active form LL-37. LL-37 is the only peptide in the Cathelicidin family found in the human body.

<span class="mw-page-title-main">Beta-defensin 2</span> Mammalian protein found in humans

Beta-defensin 2 (BD-2) also known as skin-antimicrobial peptide 1 (SAP1) is a peptide that in humans is encoded by the DEFB4 gene.

<span class="mw-page-title-main">Alpha defensin</span>

Alpha defensins are a family of mammalian defensin peptides of the alpha subfamily. In mammals they are also known as cryptdins and are produced within the small bowel. Cryptdin is a portmanteau of crypt and defensin.

<span class="mw-page-title-main">Beta defensin</span>

Beta defensins are a family of vertebrate defensins. The beta defensins are antimicrobial peptides implicated in the resistance of epithelial surfaces to microbial colonization.

<span class="mw-page-title-main">DEFA1</span> Protein-coding gene in the species Homo sapiens

Defensin, alpha 1 also known as human alpha defensin 1, human neutrophil peptide 1 (HNP-1) or neutrophil defensin 1 is a human protein that is encoded by the DEFA1 gene. Human alpha defensin 1 belongs to the alpha defensin family of antimicrobial peptides.

<span class="mw-page-title-main">Arthropod defensin</span>

Arthropod defensins are a family defensin proteins found in mollusks, insects, and arachnids. These cysteine-rich antibacterial peptides are primarily active against Gram-positive bacteria and fungi in vitro. However Drosophila fruit flies mutant for the fly defensin were more susceptible to infection by the Gram-negative bacteria Providencia burhodogranariea, and resisted infection against Gram-positive bacteria like wild-type flies. It remains to be seen how in vitro activity relates to in vivo function. Mutants for the defensin-like antimicrobial peptide Drosomycin were more susceptible to fungi, validating a role for defensin-like peptides in anti-fungal defence.

Histatins are histidine-rich (cationic) antimicrobial proteins found in saliva. Histatin's involvement in antimicrobial activities makes histatin part of the innate immune system.

<span class="mw-page-title-main">Plant lipid transfer proteins</span>

Plant lipid transfer proteins, also known as plant LTPs or PLTPs, are a group of highly-conserved proteins of about 7-9kDa found in higher plant tissues. As its name implies, lipid transfer proteins facilitate the shuttling of phospholipids and other fatty acid groups between cell membranes. LTPs are divided into two structurally related subfamilies according to their molecular masses: LTP1s (9 kDa) and LTP2s (7 kDa). Various LTPs bind a wide range of ligands, including fatty acids with a C10–C18 chain length, acyl derivatives of coenzyme A, phospho- and galactolipids, prostaglandin B2, sterols, molecules of organic solvents, and some drugs.

Protegrins are small peptides containing 16-18 amino acid residues. Protegrins were first discovered in porcine leukocytes and were found to have antimicrobial activity against bacteria, fungi, and some enveloped viruses. The amino acid composition of protegrins contains six positively charged arginine residues and four cysteine residues. Their secondary structure is classified as cysteine-rich β-sheet antimicrobial peptides, AMPs, that display limited sequence similarity to certain defensins and tachyplesins. In solution, the peptides fold to form an anti-parallel β-strand with the structure stabilized by two cysteine bridges formed among the four cysteine residues. Recent studies suggest that protegrins can bind to lipopolysaccharide, a property that may help them to insert into the membranes of gram-negative bacteria and permeabilize them.

<span class="mw-page-title-main">Thionin</span>

Thionins are a family of small proteins found solely in higher plants. Typically, a thionin consists of 45–48 amino acid residues. 6–8 of these are cysteine forming 3–4 disulfide bonds. They include phoratoxins and viscotoxins.

Theta-defensins are a family of mammalian antimicrobial peptides. They are found in non-human 'Old World' primates, but not in human, gorilla, bonobo, and chimpanzee.

<span class="mw-page-title-main">Drosomycin</span>

Drosomycin is an antifungal peptide from Drosophila melanogaster and was the first antifungal peptide isolated from insects. Drosomycin is induced by infection by the Toll signalling pathway, while expression in surface epithelia like the respiratory tract is instead controlled by the immune deficiency pathway (Imd). This means that drosomycin, alongside other antimicrobial peptides (AMPs) such as cecropins, diptericin, drosocin, metchnikowin and attacin, serves as a first line defence upon septic injury. However drosomycin is also expressed constitutively to a lesser extent in different tissues and throughout development.

<span class="mw-page-title-main">Leucine-rich repeat receptor like protein kinase</span>

Leucine-rich repeat receptor like protein kinase are plant cell membrane localized Leucine-rich repeat (LRR) receptor kinase that play critical roles in plant innate immunity. Plants have evolved intricate immunity mechanism to combat against pathogen infection by recognizing Pathogen Associated Molecular Patterns (PAMP) and endogenous Damage Associated Molecular Patterns (DAMP). PEPR 1 considered as the first known DAMP receptor of Arabidopsis.

Cysteine-rich proteins are small proteins that contain a large number of cysteines. These cysteines either cross-link to form disulphide bonds, or bind metal ions by chelation, stabilising the protein's tertiary structure. CRPs include a highly conserved secretion peptide signal at the N-terminus and a cysteine-rich region at the C-terminus.

A proteolipid is a protein covalently linked to lipid molecules, which can be fatty acids, isoprenoids or sterols. The process of such a linkage is known as protein lipidation, and falls into the wider category of acylation and post-translational modification. Proteolipids are abundant in brain tissue, and are also present in many other animal and plant tissues. They include ghrelin, a peptide hormone associated with feeding. Many proteolipids are composed of proteins covalenently bound to fatty acid chains, often granting them an interface for interacting with biological membranes. They are not to be confused with lipoproteins, a kind of spherical assembly made up of many molecules of lipids and some apolipoproteins.

References

  1. 1 2 3 Parisi K, Shafee TM, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA (April 2019). "The evolution, function and mechanisms of action for plant defensins". Seminars in Cell & Developmental Biology. 88: 107–118. doi:10.1016/j.semcdb.2018.02.004. PMID   29432955. S2CID   3543741.
  2. 1 2 3 Sathoff AE, Samac DA (May 2019). "Antibacterial Activity of Plant Defensins". Molecular Plant-Microbe Interactions. 32 (5): 507–514. doi: 10.1094/mpmi-08-18-0229-cr . PMID   30501455. S2CID   205343360.
  3. 1 2 Carvalho A, Gomes VM (December 2011). "Plant defensins and defensin-like peptides - biological activities and biotechnological applications". Current Pharmaceutical Design. 17 (38): 4270–4293. doi:10.2174/138161211798999447. PMID   22204427.
  4. Javaux EJ, Knoll AH, Walter MR (July 2001). "Morphological and ecological complexity in early eukaryotic ecosystems". Nature. 412 (6842): 66–69. doi:10.1038/35083562. PMID   11452306. S2CID   205018792.
  5. 1 2 Tavares LS, Santos M, Viccini LF, Moreira JS, Miller RN, Franco OL (October 2008). "Biotechnological potential of antimicrobial peptides from flowers". Peptides. 29 (10): 1842–1851. doi:10.1016/j.peptides.2008.06.003. PMID   18602431. S2CID   25750244.
  6. Lay FT, Poon S, McKenna JA, Connelly AA, Barbeta BL, McGinness BS, et al. (February 2014). "The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions". BMC Plant Biology. 14 (1): 41. doi: 10.1186/1471-2229-14-41 . PMC   3922462 . PMID   24495600.
  7. 1 2 Azmi S, Hussain MK (2021-01-14). "Analysis of structures, functions, and transgenicity of phytopeptides defensin and thionin: a review". Beni-Suef University Journal of Basic and Applied Sciences. 10 (1). doi: 10.1186/s43088-020-00093-5 . ISSN   2314-8543.
  8. Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, et al. (December 1990). "Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm". European Journal of Biochemistry. 194 (2): 533–539. doi: 10.1111/j.1432-1033.1990.tb15649.x . PMID   2176600.
  9. Colilla FJ, Rocher A, Mendez E (September 1990). "gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm". FEBS Letters. 270 (1–2): 191–194. doi: 10.1016/0014-5793(90)81265-p . PMID   2226781. S2CID   9260786.
  10. Broekaert WF, Terras FR, Cammue BP, Osborn RW (August 1995). "Plant defensins: novel antimicrobial peptides as components of the host defense system". Plant Physiology. 108 (4): 1353–1358. doi:10.1104/pp.108.4.1353. PMC   157512 . PMID   7659744.
  11. 1 2 Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, et al. (May 1995). "Small cysteine-rich antifungal proteins from radish: their role in host defense". The Plant Cell. 7 (5): 573–588. doi:10.1105/tpc.7.5.573. PMC   160805 . PMID   7780308.
  12. Carvalho A, Gomes VM (May 2009). "Plant defensins--prospects for the biological functions and biotechnological properties". Peptides. 30 (5): 1007–1020. doi: 10.1016/j.peptides.2009.01.018 . PMID   19428780. S2CID   44007736.
  13. Siddique S, Wieczorek K, Szakasits D, Kreil DP, Bohlmann H (October 2011). "The promoter of a plant defensin gene directs specific expression in nematode-induced syncytia in Arabidopsis roots". Plant Physiology and Biochemistry. 49 (10): 1100–1107. doi:10.1016/j.plaphy.2011.07.005. PMC   3185291 . PMID   21813283.
  14. Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, et al. (December 1996). "Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway". The Plant Cell. 8 (12): 2309–2323. doi:10.1105/tpc.8.12.2309. PMC   161354 . PMID   8989885.
  15. Dash TS, Shafee T, Harvey PJ, Zhang C, Peigneur S, Deuis JR, et al. (February 2019). "A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins" (PDF). Structure. 27 (2): 315–326.e7. doi: 10.1016/J.STR.2018.10.022 . PMID   30554841.
  16. Shafee TM, Lay FT, Hulett MD, Anderson MA (September 2016). "The Defensins Consist of Two Independent, Convergent Protein Superfamilies" (PDF). Molecular Biology and Evolution. 33 (9): 2345–2356. doi: 10.1093/molbev/msw106 . PMID   27297472.
  17. Shafee TM, Lay FT, Phan TK, Anderson MA, Hulett MD (February 2017). "Convergent evolution of defensin sequence, structure and function". Cellular and Molecular Life Sciences. 74 (4): 663–682. doi:10.1007/s00018-016-2344-5. PMID   27557668. S2CID   24741736.
  18. 1 2 Bruix M, Jiménez MA, Santoro J, González C, Colilla FJ, Méndez E, Rico M (January 1993). "Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins". Biochemistry. 32 (2): 715–724. doi:10.1021/bi00053a041. PMID   8380707.
  19. Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ (July 2003). "Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds". Biochemistry. 42 (27): 8214–8222. doi:10.1021/bi034379o. PMID   12846570.
  20. Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (May 1995). "Refined three-dimensional solution structure of insect defensin A". Structure. 3 (5): 435–448. doi: 10.1016/s0969-2126(01)00177-0 . PMID   7663941.
  21. Bontems F, Roumestand C, Boyot P, Gilquin B, Doljansky Y, Menez A, Toma F (February 1991). "Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins". European Journal of Biochemistry. 196 (1): 19–28. doi: 10.1111/j.1432-1033.1991.tb15780.x . PMID   1705886.
  22. Wong JH, Ng TB (July 2005). "Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase". Peptides. 26 (7): 1120–1126. doi:10.1016/j.peptides.2005.01.003. PMID   15949629. S2CID   39557168.
  23. Wong JH, Ng TB (August 2005). "Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris)". The International Journal of Biochemistry & Cell Biology. 37 (8): 1626–1632. doi:10.1016/j.biocel.2005.02.022. PMID   15896669.
  24. Silverstein KA, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (July 2007). "Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants". The Plant Journal. 51 (2): 262–280. doi: 10.1111/j.1365-313x.2007.03136.x . PMID   17565583.
  25. Lay FT, Anderson MA (February 2005). "Defensins--components of the innate immune system in plants". Current Protein & Peptide Science. 6 (1): 85–101. doi:10.2174/1389203053027575. PMID   15638771.
  26. Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K (2007). "The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans". Journal of Molecular Microbiology and Biotechnology. 13 (4): 243–247. doi:10.1159/000104753. PMID   17827975. S2CID   26806532.
  27. Cools TL, Struyfs C, Cammue BP, Thevissen K (April 2017). "Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections". Future Microbiology. 12 (5): 441–454. doi:10.2217/fmb-2016-0181. PMID   28339295.
  28. Thevissen K, François IE, Takemoto JY, Ferket KK, Meert EM, Cammue BP (September 2003). "DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae". FEMS Microbiology Letters. 226 (1): 169–173. doi: 10.1016/S0378-1097(03)00590-1 . PMID   13129623.
  29. Thevissen K, Ferket KK, François IE, Cammue BP (November 2003). "Interactions of antifungal plant defensins with fungal membrane components". Peptides. Antimicrobial Peptides II. 24 (11): 1705–1712. doi:10.1016/j.peptides.2003.09.014. PMID   15019201. S2CID   36092756.
  30. Kvansakul M, Lay FT, Adda CG, Veneer PK, Baxter AA, Phan TK, et al. (October 2016). "Binding of phosphatidic acid by NsD7 mediates the formation of helical defensin-lipid oligomeric assemblies and membrane permeabilization". Proceedings of the National Academy of Sciences of the United States of America. 113 (40): 11202–11207. Bibcode:2016PNAS..11311202K. doi: 10.1073/pnas.1607855113 . PMC   5056070 . PMID   27647905.
  31. Wilmes M, Cammue BP, Sahl HG, Thevissen K (August 2011). "Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation". Natural Product Reports. 28 (8): 1350–1358. doi:10.1039/c1np00022e. PMID   21617811.
  32. Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, et al. (January 2007). "Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle". Biochemistry. 46 (4): 987–996. doi:10.1021/bi061441j. PMID   17240982.
  33. Aerts AM, Bammens L, Govaert G, Carmona-Gutierrez D, Madeo F, Cammue BP, Thevissen K (2011). "The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans". Frontiers in Microbiology. 2: 47. doi: 10.3389/fmicb.2011.00047 . PMC   3128936 . PMID   21993350.
  34. Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, et al. (April 2012). "The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans". Molecular Microbiology. 84 (1): 166–180. doi:10.1111/j.1365-2958.2012.08017.x. PMC   3405362 . PMID   22384976.
  35. 1 2 Velivelli SL, Islam KT, Hobson E, Shah DM (2018-05-16). "Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris". Frontiers in Microbiology. 9: 934. doi: 10.3389/fmicb.2018.00934 . PMC   5964164 . PMID   29867843.
  36. Cools TL, Vriens K, Struyfs C, Verbandt S, Ramada MH, Brand GD, et al. (2017-11-21). "The Antifungal Plant Defensin HsAFP1 Is a Phosphatidic Acid-Interacting Peptide Inducing Membrane Permeabilization". Frontiers in Microbiology. 8: 2295. doi: 10.3389/fmicb.2017.02295 . PMC   5702387 . PMID   29209301.
  37. Chen GH, Hsu MP, Tan CH, Sung HY, Kuo CG, Fan MJ, et al. (February 2005). "Cloning and characterization of a plant defensin VaD1 from azuki bean". Journal of Agricultural and Food Chemistry. 53 (4): 982–988. doi:10.1021/jf0402227. PMID   15713009.
  38. 1 2 Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (November 2008). "Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family". Proteins. 73 (3): 719–729. doi:10.1002/prot.22086. PMID   18498107. S2CID   28378146.
  39. 1 2 3 Franco OL, Rigden DJ, Melo FR, Grossi-De-Sá MF (January 2002). "Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases". European Journal of Biochemistry. 269 (2): 397–412. doi: 10.1046/j.0014-2956.2001.02656.x . PMID   11856298.
  40. 1 2 Pelegrini PB, Franco OL (November 2005). "Plant gamma-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins". The International Journal of Biochemistry & Cell Biology. 37 (11): 2239–2253. doi:10.1016/j.biocel.2005.06.011. PMID   16084753.
  41. 1 2 Bloch C, Richardson M (February 1991). "A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins". FEBS Letters. 279 (1): 101–104. doi: 10.1016/0014-5793(91)80261-z . PMID   1995329. S2CID   84023901.
  42. Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM (November 2000). "Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin". Plant Science. 159 (2): 243–255. doi:10.1016/s0168-9452(00)00348-4. PMID   11074277.
  43. Mulla JA, Tamhane VA (February 2023). "Novel insights into plant defensin ingestion induced metabolic responses in the polyphagous insect pest Helicoverpa armigera". Scientific Reports. 13 (1): 3151. Bibcode:2023NatSR..13.3151M. doi:10.1038/s41598-023-29250-3. PMC   9950371 . PMID   36823197. S2CID   257084253.
  44. Poon IK, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JA, et al. (April 2014). "Phosphoinositide-mediated oligomerization of a defensin induces cell lysis". eLife. 3: e01808. doi: 10.7554/ELIFE.01808 . PMC   3968744 . PMID   24692446.
  45. Baxter AA, Richter V, Lay FT, Poon IK, Adda CG, Veneer PK, et al. (June 2015). "The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis". Molecular and Cellular Biology. 35 (11): 1964–1978. doi: 10.1128/mcb.00282-15 . PMC   4420927 . PMID   25802281. S2CID   26373331.
  46. Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE (February 2005). "Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice". Clinical Cancer Research. 11 (4): 1551–1562. doi:10.1158/1078-0432.ccr-04-1645. PMID   15746060. S2CID   10494972.
  47. Kufe DW (December 2009). "Mucins in cancer: function, prognosis and therapy". Nature Reviews. Cancer. 9 (12): 874–885. doi:10.1038/nrc2761. PMC   2951677 . PMID   19935676.
  48. Baxter AA, Poon IK, Hulett MD (2017-01-23). "The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process". Cell Death Discovery. 3 (1): 16102. doi:10.1038/cddiscovery.2016.102. PMC   5253418 . PMID   28179997. S2CID   1845991.
  49. Guzmán-Rodríguez JJ, Ochoa-Zarzosa A, López-Gómez R, López-Meza JE (2015). "Plant antimicrobial peptides as potential anticancer agents". BioMed Research International. 2015: 735087. doi: 10.1155/2015/735087 . PMC   4359852 . PMID   25815333.
  50. de Beer A, Vivier MA (October 2011). "Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes". BMC Research Notes. 4 (1): 459. doi: 10.1186/1756-0500-4-459 . PMC   3213222 . PMID   22032337.
  51. Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, et al. (June 2015). "The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells". MicrobiologyOpen. 4 (3): 409–422. doi:10.1002/mbo3.248. PMC   4475384 . PMID   25755096.
  52. Kumar M, Yusuf MA, Yadav P, Narayan S, Kumar M (2019-03-12). "Overexpression of Chickpea Defensin Gene Confers Tolerance to Water-Deficit Stress in Arabidopsis thaliana". Frontiers in Plant Science. 10: 290. doi: 10.3389/fpls.2019.00290 . PMC   6423178 . PMID   30915095.
  53. Gu Q, Kawata EE, Morse MJ, Wu HM, Cheung AY (July 1992). "A flower-specific cDNA encoding a novel thionin in tobacco". Molecular & General Genetics. 234 (1): 89–96. doi:10.1007/BF00272349. PMID   1495489. S2CID   32002467.
  54. Terras FR, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF (February 1993). "A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species". FEBS Letters. 316 (3): 233–240. doi: 10.1016/0014-5793(93)81299-F . PMID   8422949. S2CID   28420512.
  55. Ishibashi N, Yamauchi D, Minamikawa T (July 1990). "Stored mRNA in cotyledons of Vigna unguiculata seeds: nucleotide sequence of cloned cDNA for a stored mRNA and induction of its synthesis by precocious germination". Plant Molecular Biology. 15 (1): 59–64. doi:10.1007/BF00017724. PMID   2103443. S2CID   13588960.
  56. Choi Y, Choi YD, Lee JS (February 1993). "Nucleotide sequence of a cDNA encoding a low molecular weight sulfur-rich protein in soybean seeds". Plant Physiology. 101 (2): 699–700. doi:10.1104/pp.101.2.699. PMC   160625 . PMID   8278516.
  57. Hammami R, Ben Hamida J, Vergoten G, Fliss I (January 2009). "PhytAMP: a database dedicated to antimicrobial plant peptides". Nucleic Acids Research. 37 (Database issue): D963–D968. doi:10.1093/nar/gkn655. PMC   2686510 . PMID   18836196.

Subfamilies

This article incorporates text from the public domain Pfam and InterPro: IPR008176