Porphyroblast

Last updated
An almandine-garnet growing as a porphyroblast in a quartzitic gneiss. The garnet measures 3 cm. Location: Paraiba, Brazil. Almandine.jpeg
An almandine-garnet growing as a porphyroblast in a quartzitic gneiss. The garnet measures 3 cm. Location: Paraíba, Brazil.
Dark-coloured porphyroblasts of garnet in mica schist at Syros, Greece. Garnet Mica Schist Syros Greece.jpg
Dark-coloured porphyroblasts of garnet in mica schist at Syros, Greece.

A porphyroblast is a large mineral crystal in a metamorphic rock which has grown within the finer grained matrix. Porphyroblasts are commonly euhedral crystals, but can also be partly to completely irregular in shape.

The most common porphyroblasts in metapelites (metamorphosed mudstones and siltstones) are garnets and staurolites, which stand out in well-foliated metapelites (such as schists) against the platy mica matrix.

A similar type of crystal is a phenocryst , a large crystal in an igneous rock. Porphyroblasts are often confused with porphyroclasts , which can also be large outstanding crystals, but which are older than the matrix of the rock[ citation needed ].

If a porphyroblastic mineral has small inclusions of minerals within it, the mineral is described as poikiloblastic. This observation can help interpret deformation history.

A rock which has many porphyroblasts is described as having a porphyroblastic texture.

As porphyroblasts grow, the foliation may be preserved as oriented inclusions trapped by the porphyroblast as it overgrows them, and this is helpful for tracking changing deformation planes.

In metamorphic rocks that experience deformation during metamorphism, porphyroblasts may grow before, during, or after the phase of deformation recorded by the matrix minerals. The relationship of porphyroblast growth to deformation is typically evaluated by comparing the shape orientation of trails of mineral inclusions in the porphyroblast to the matrix fabric.

Thin section of garnet mica schist from Salangen, Norway. A garnet porphyroblast (black) contains curved trails of small inclusions (white and grey). Thin section of garnet-mica-schist.jpg
Thin section of garnet mica schist from Salangen, Norway. A garnet porphyroblast (black) contains curved trails of small inclusions (white and grey).

Some garnet porphyroblasts contain curving trails of quartz and other mineral inclusions that record rotation of the crystals relative to their surroundings. However, the question of how much porphyroblasts actually rotate in an external reference frame fixed to the Earth's surface during metamorphism and deformation has long been the subject of debate. The question focused on so-called "spiral garnets", also known as "snowball garnets", whose inclusion trails define spiral patterns. These microstructures are interpreted classically as having formed by shearing induced rotation of a growing garnet crystal. [1] Later research, however, led to an alternative formation model in which a porphyroblast grows over a developing microfold while maintaining a stable position in the external reference frame. [2] Repetition of this process can then produce complex spiral-shaped patterns. Although many researchers continue to adopt the classic rotational model, most researchers who have published research testing both models by measuring the orientations of porphyroblasts have come to support the modern interpretation. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Sandstone</span> Type of sedimentary rock

Sandstone is a clastic sedimentary rock composed mainly of sand-sized silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks.

<span class="mw-page-title-main">Schist</span> Easily split medium-grained metamorphic rock

Schist is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes or plates. This texture reflects a high content of platy minerals, such as mica, talc, chlorite, or graphite. These are often interleaved with more granular minerals, such as feldspar or quartz.

<span class="mw-page-title-main">Metamorphic rock</span> Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

<span class="mw-page-title-main">Metamorphism</span> Change of minerals in pre-existing rocks without melting into liquid magma

Metamorphism is the transformation of existing rock to rock with a different mineral composition or texture. Metamorphism takes place at temperatures in excess of 150 °C (300 °F), and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. Metamorphism is distinct from weathering or diagenesis, which are changes that take place at or just beneath Earth's surface.

<span class="mw-page-title-main">Amphibolite</span> Metamorphic rock type

Amphibolite is a metamorphic rock that contains amphibole, especially hornblende and actinolite, as well as plagioclase feldspar, but with little or no quartz. It is typically dark-colored and dense, with a weakly foliated or schistose (flaky) structure. The small flakes of black and white in the rock often give it a salt-and-pepper appearance.

<span class="mw-page-title-main">Quartzite</span> Hard, non-foliated metamorphic rock

Quartzite is a hard, non-foliated metamorphic rock which was originally pure quartz sandstone. Sandstone is converted into quartzite through heating and pressure usually related to tectonic compression within orogenic belts. Pure quartzite is usually white to grey, though quartzites often occur in various shades of pink and red due to varying amounts of hematite. Other colors, such as yellow, green, blue and orange, are due to other minerals.

<span class="mw-page-title-main">Lithology</span> Description of its physical characteristics of a rock unit

The lithology of a rock unit is a description of its physical characteristics visible at outcrop, in hand or core samples, or with low magnification microscopy. Physical characteristics include colour, texture, grain size, and composition. Lithology may refer to either a detailed description of these characteristics, or a summary of the gross physical character of a rock. Examples of lithologies in the second sense include sandstone, slate, basalt, or limestone.

<span class="mw-page-title-main">Staurolite</span> Reddish brown to black nesosilicate mineral

Staurolite is a reddish brown to black, mostly opaque, nesosilicate mineral with a white streak. It crystallizes in the monoclinic crystal system, has a Mohs hardness of 7 to 7.5 and the chemical formula: Fe2+2Al9O6(SiO4)4(O,OH)2. Magnesium, zinc and manganese substitute in the iron site and trivalent iron can substitute for aluminium.

<span class="mw-page-title-main">Mylonite</span> Metamorphic rock

Mylonite is a fine-grained, compact metamorphic rock produced by dynamic recrystallization of the constituent minerals resulting in a reduction of the grain size of the rock. Mylonites can have many different mineralogical compositions; it is a classification based on the textural appearance of the rock.

<span class="mw-page-title-main">Shear (geology)</span> Response of rock to deformation

In geology, shear is the response of a rock to deformation usually by compressive stress and forms particular textures. Shear can be homogeneous or non-homogeneous, and may be pure shear or simple shear. Study of geological shear is related to the study of structural geology, rock microstructure or rock texture and fault mechanics.

In a geological context, crenulation or crenulation cleavage is a fabric formed in metamorphic rocks such as phyllite, schist and some gneiss by two or more stress directions causing the formation of the superimposed foliations.

<span class="mw-page-title-main">Foliation (geology)</span>

Foliation in geology refers to repetitive layering in metamorphic rocks. Each layer can be as thin as a sheet of paper, or over a meter in thickness. The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. It is caused by shearing forces, or differential pressure. The layers form parallel to the direction of the shear, or perpendicular to the direction of higher pressure. Nonfoliated metamorphic rocks are typically formed in the absence of significant differential pressure or shear. Foliation is common in rocks affected by the regional metamorphic compression typical of areas of mountain belt formation.

<span class="mw-page-title-main">Texture (geology)</span>

In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline, fragmental, aphanitic, and glassy. The geometric aspects and relations amongst the component particles or crystals are referred to as the crystallographic texture or preferred orientation. Textures can be quantified in many ways. The most common parameter is the crystal size distribution. This creates the physical appearance or character of a rock, such as grain size, shape, arrangement, and other properties, at both the visible and microscopic scale.

<span class="mw-page-title-main">Porphyroclast</span>

A porphyroclast is a clast or mineral fragment in a metamorphic rock, surrounded by a groundmass of finer grained crystals. Porphyroclasts are fragments of the original rock before dynamic recrystallisation or cataclasis produced the groundmass. This means they are older than the groundmass. They were stronger pieces of the original rock, that could not as easily deform and were therefore not or hardly affected by recrystallisation. They may have been phenocrysts or porphyroblasts in the original rock.

<span class="mw-page-title-main">Augen</span>

Augen are large, lenticular eye-shaped mineral grains or mineral aggregates visible in some foliated metamorphic rocks. In cross section they have the shape of an eye.

<span class="mw-page-title-main">Cleavage (geology)</span> Planar fabric in rock

Cleavage, in structural geology and petrology, describes a type of planar rock feature that develops as a result of deformation and metamorphism. The degree of deformation and metamorphism along with rock type determines the kind of cleavage feature that develops. Generally, these structures are formed in fine grained rocks composed of minerals affected by pressure solution.

<span class="mw-page-title-main">Metamorphic facies</span> Set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures

A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures. The assemblage is typical of what is formed in conditions corresponding to an area on the two dimensional graph of temperature vs. pressure. Rocks which contain certain minerals can therefore be linked to certain tectonic settings, times and places in the geological history of the area. The boundaries between facies are wide because they are gradational and approximate. The area on the graph corresponding to rock formation at the lowest values of temperature and pressure is the range of formation of sedimentary rocks, as opposed to metamorphic rocks, in a process called diagenesis.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

<span class="mw-page-title-main">Monazite geochronology</span> Dating technique to study geological history using nuclear decay of the mineral monazite

Monazite geochronology is a dating technique to study geological history using the mineral monazite. It is a powerful tool in studying the complex history of metamorphic rocks particularly, as well as igneous, sedimentary and hydrothermal rocks. The dating uses the radioactive processes in monazite as a clock.

<span class="mw-page-title-main">Pressure-temperature-time path</span>

The Pressure-Temperature-time path is a record of the pressure and temperature (P-T) conditions that a rock experienced in a metamorphic cycle from burial and heating to uplift and exhumation to the surface. Metamorphism is a dynamic process which involves the changes in minerals and textures of the pre-existing rocks (protoliths) under different P-T conditions in solid state. The changes in pressures and temperatures with time experienced by the metamorphic rocks are often investigated by petrological methods, radiometric dating techniques and thermodynamic modeling.

References

  1. Rosenfeld, J.L. (1970). Rotated garnets in metamorphic rocks. Special Paper of the Geological Society of America, 129 pp. Geological Society of America.
  2. T.H. Bell; S.E. Johnson (1989). "Porphyroblast inclusion trails: the key to orogenesis". Journal of Metamorphic Geology. 7 (3): 279–310. Bibcode:1989JMetG...7..279B. doi:10.1111/j.1525-1314.1989.tb00598.x.
  3. D. Aerden; S.E. Johnson; K. Michibayashi (2013). "Deformation, Pophyroblasts and Mountain Building: A Special Issue in Honor of the Career Contributions of T.H. Bell". Tectonophysics. 587.