Positional game

Last updated

A positional game [1] [2] is a kind of a combinatorial game for two players. It is described by:

Contents

During the game, players alternately claim previously-unclaimed positions, until one of the players wins. If all positions in are taken while no player wins, the game is considered a draw.

The classic example of a positional game is tic-tac-toe. In it, contains the 9 squares of the game-board, contains the 8 lines that determine a victory (3 horizontal, 3 vertical and 2 diagonal), and the winning criterion is: the first player who holds an entire winning-set wins. Other examples of positional games are Hex and the Shannon switching game.

For every positional game there are exactly three options: either the first player has a winning strategy, or the second player has a winning strategy, or both players have strategies to enforce a draw. [2] :7 The main question of interest in the study of these games is which of these three options holds in any particular game.

A positional game is finite, deterministic and has perfect information; therefore, in theory it is possible to create the full game tree and determine which of these three options holds. In practice, however, the game-tree might be enormous. Therefore, positional games are usually analyzed via more sophisticated combinatorial techniques.

Alternative terminology

Often, the input to a positional game is considered a hypergraph. In this case:

Variants

There are many variants of positional games, differing in their rules and their winning criteria.

Different winning criteria

Strong positional game (also called Maker-Maker game)
The first player to claim all of the elements of a winning set wins. If the game ends with all elements of the board claimed, but no player has claimed all elements of a winning set, it is a draw. An example is classic tic-tac-toe.
Maker-Breaker game
The two players are called Maker and Breaker. Maker wins by claiming all elements of a winning set. If the game ends with all elements of the board claimed, and Maker has not yet won, then Breaker wins. Draws are not possible. An example is the Shannon switching game.
Avoider-Enforcer game
The players are called Avoider and Enforcer. Enforcer wins if Avoider ever claims all of the elements of a winning set. If the game ends with all elements of the board claimed, and Avoider has not claimed a winning set, then Avoider wins. As in maker-breaker games, a draw is not possible. An example is Sim.
Discrepancy game
The players are called Balancer and Unbalancer. Balancer wins if he ensures that in all winning sets, each player has roughly half of the vertices. Otherwise Unbalancer wins.

Different game rules

Waiter-Client game (also called Picker-Chooser game)
the players are called Waiter and Client. In each turn, Waiter picks two positions and shows them to Client, who can choose one of them.
Biased positional game
each positional game has a biased variant, in which the first player can take p elements at a time and the second player can take q elements at a time (in the unbiased variant, p=q=1).

Specific games

The following table lists some specific positional games that were widely studied in the literature.

NamePositionsWinning sets
Multi-dimensional tic-tac-toe All squares in a multi-dimensional boxAll straight lines
Shannon switching game All edges of a graphAll paths from s to t
Sim All edges between 6 vertices.All triangles [losing sets].
Clique game (aka Ramsey game)All edges of a complete graph of size nAll cliques of size k
Connectivity game All edges of a complete graph All spanning trees
Hamiltonicity game All edges of a complete graph All Hamiltonian paths
Non-planarity game All edges of a complete graph All non-planar sub-graphs
Arithmetic progression game The numbers {1,...,n}All arithmetic progressions of size k

See also

Related Research Articles

<span class="mw-page-title-main">Tic-tac-toe</span> Paper-and-pencil game for two players

Tic-tac-toe, noughts and crosses, or Xs and Os is a paper-and-pencil game for two players who take turns marking the spaces in a three-by-three grid with X or O. The player who succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner. It is a solved game, with a forced draw assuming best play from both players.

<span class="mw-page-title-main">Combinatorial game theory</span> Branch of game theory about two-player sequential games with perfect information

Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

In general topology, set theory and game theory, a Banach–Mazur game is a topological game played by two players, trying to pin down elements in a set (space). The concept of a Banach–Mazur game is closely related to the concept of Baire spaces. This game was the first infinite positional game of perfect information to be studied. It was introduced by Stanisław Mazur as problem 43 in the Scottish book, and Mazur's questions about it were answered by Banach.

In mathematics, the Hales–Jewett theorem is a fundamental combinatorial result of Ramsey theory named after Alfred W. Hales and Robert I. Jewett, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure; it is impossible for such objects to be "completely random".

In combinatorial game theory, the strategy-stealing argument is a general argument that shows, for many two-player games, that the second player cannot have a guaranteed winning strategy. The strategy-stealing argument applies to any symmetric game in which an extra move can never be a disadvantage. A key property of a strategy-stealing argument is that it proves that the first player can win the game without actually constructing such a strategy. So, although it might prove the existence of a winning strategy, the proof gives no information about what that strategy is.

A Maker-Breaker game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements and its family of winning-sets. It is played by two players, called Maker and Breaker, who alternately take previously untaken elements.

<span class="mw-page-title-main">Selection principle</span> Rule in mathematics

In mathematics, a selection principle is a rule asserting the possibility of obtaining mathematically significant objects by selecting elements from given sequences of sets. The theory of selection principles studies these principles and their relations to other mathematical properties. Selection principles mainly describe covering properties, measure- and category-theoretic properties, and local properties in topological spaces, especially function spaces. Often, the characterization of a mathematical property using a selection principle is a nontrivial task leading to new insights on the characterized property.

<span class="mw-page-title-main">Tic-tac-toe variants</span> Overview about tic-tac-toe variants

Tic-tac-toe is an instance of an m,n,k-game, where two players alternate taking turns on an m×n board until one of them gets k in a row. Harary's generalized tic-tac-toe is an even broader generalization. The game can also be generalized as a nd game. The game can be generalised even further from the above variants by playing on an arbitrary hypergraph where rows are hyperedges and cells are vertices.

A nd game (or nk game) is a generalization of the combinatorial game tic-tac-toe to higher dimensions. It is a game played on a nd hypercube with 2 players. If one player creates a line of length n of their symbol (X or O) they win the game. However, if all nd spaces are filled then the game is a draw. Tic-tac-toe is the game where n equals 3 and d equals 2 (3, 2). Qubic is the (4, 3) game. The (n > 0, 0) or (1, 1) games are trivially won by the first player as there is only one space (n0 = 1 and 11 = 1). A game with d = 1 and n > 1 cannot be won if both players are playing well as an opponent's piece will block the one-dimensional line.

In mathematics, a Hurewicz space is a topological space that satisfies a certain basic selection principle that generalizes σ-compactness. A Hurewicz space is a space in which for every sequence of open covers of the space there are finite sets such that every point of the space belongs to all but finitely many sets .

A discrepancy game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements and a family of sets. It is played by two players, called Balancer and Unbalancer. Each player in turn picks an element. The goal of Balancer is to ensure that every set in is balanced, i.e., the elements in each set are distributed roughly equally between the players. The goal of Unbalancer is to ensure that at least one set is unbalanced.

A strong positional game is a kind of positional game. Like most positional games, it is described by its set of positions and its family of winning-sets. It is played by two players, called First and Second, who alternately take previously untaken positions.

A Waiter-Client game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements, and its family of winning-sets. It is played by two players, called Waiter and Client. Each round, Waiter picks two elements, Client chooses one element and Waiter gets the other element.

<span class="mw-page-title-main">Avoider-Enforcer game</span> Game where players avoid making losing-sets

An Avoider-Enforcer game is a kind of positional game. Like most positional games, it is described by a set of positions/points/elements and a family of subsets, which are called here the losing-sets. It is played by two players, called Avoider and Enforcer, who take turns picking elements until all elements are taken. Avoider wins if he manages to avoid taking a losing set; Enforcer wins if he manages to make Avoider take a losing set.

A biased positional game is a variant of a positional game. Like most positional games, it is described by a set of positions/points/elements and a family of subsets, which are usually called the winning-sets. It is played by two players who take turns picking elements until all elements are taken. While in the standard game each player picks one element per turn, in the biased game each player takes a different number of elements.

The clique game is a positional game where two players alternately pick edges, trying to occupy a complete clique of a given size.

A box-making game is a biased positional game where two players alternately pick elements from a family of pairwise-disjoint sets ("boxes"). The first player - called BoxMaker - tries to pick all elements of a single box. The second player - called BoxBreaker - tries to pick at least one element of all boxes.

In a positional game, a pairing strategy is a strategy that a player can use to guarantee victory, or at least force a draw. It is based on dividing the positions on the game-board into disjoint pairs. Whenever the opponent picks a position in a pair, the player picks the other position in the same pair.

Combinatorial Games: Tic-Tac-Toe Theory is a monograph on the mathematics of tic-tac-toe and other positional games, written by József Beck. It was published in 2008 by the Cambridge University Press as volume 114 of their Encyclopedia of Mathematics and its Applications book series (ISBN 978-0-521-46100-9).

In the mathematical study of combinatorics on words, a parameter word is a string over a given alphabet having some number of wildcard characters. The set of strings matching a given parameter word is called a parameter set or combinatorial cube. Parameter words can be composed, to produce smaller subcubes of a given combinatorial cube. They have applications in Ramsey theory and in computer science in the detection of duplicate code.

References

  1. Beck, József (2008). Combinatorial Games: Tic-Tac-Toe Theory. Cambridge: Cambridge University Press. ISBN   978-0-521-46100-9.
  2. 1 2 Hefetz, Dan; Krivelevich, Michael; Stojaković, Miloš; Szabó, Tibor (2014). Positional Games. Oberwolfach Seminars. Vol. 44. Basel: Birkhäuser Verlag GmbH. ISBN   978-3-0348-0824-8.