Potassium chlorite

Last updated
Potassium chlorite
Potassium chlorite.svg
Names
IUPAC name
potassium;chlorite
Identifiers
3D model (JSmol)
ChemSpider
MeSH 67063160
PubChem CID
UNII
  • InChI=1S/ClHO2.K/c2-1-3;/h(H,2,3);/q;+1/p-1
    Key: VISKNDGJUCDNMS-UHFFFAOYSA-M
  • [O-]Cl=O.[K+]
Properties
KClO2, ClKO2
Molar mass 106.55 g/mol
Hazards
GHS labelling:
GHS-pictogram-rondflam.svg
H314
P260, P264, P280, P301+P330+P331, P304+P340, P305+P351+P338, P310, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Potassium chlorite is a potassium salt of chlorous acid (HClO2) having a chemical formula KClO2. It exists as white powder and its annhydrous form easily undergoes decomposition in presence of heat or radiation (especially gamma rays). [1]

Contents

Properties

Potassium chlorite is a colorless hygroscopic crystal that deliquesces in the air. It decomposes upon heating into potassium chloride and oxygen, emitting light.

Potassium chlorite forms orthorhombic cmcm crystals and has been reported to decompose within hours at room temperature. [1] [2] It is an oxidizing agent.

Synthesis

Some of the methods of preparation of potassium chlorite are:

Related Research Articles

<span class="mw-page-title-main">Potassium chloride</span> Ionic compound (KCl)

Potassium chloride is a metal halide salt composed of potassium and chlorine. It is odorless and has a white or colorless vitreous crystal appearance. The solid dissolves readily in water, and its solutions have a salt-like taste. Potassium chloride can be obtained from ancient dried lake deposits. KCl is used as a fertilizer, in medicine, in scientific applications, domestic water softeners, and in food processing, where it may be known as E number additive E508.

<span class="mw-page-title-main">Silane</span> Chemical compound (SiH4)

Silane (Silicane) is an inorganic compound with chemical formula SiH4. It is a colourless, pyrophoric, toxic gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents. They are commonly used to apply coatings to surfaces or as an adhesion promoter.

<span class="mw-page-title-main">Potassium chlorate</span> Chemical compound

Potassium chlorate is a compound containing potassium, chlorine and oxygen, with the molecular formula KClO3. In its pure form, it is a white crystalline substance. After sodium chlorate, it is the second most common chlorate in industrial use. It is a strong oxidizing agent and its most important application is in safety matches. In other applications it is mostly obsolete and has been replaced by safer alternatives in recent decades. It has been used

<span class="mw-page-title-main">Chlorine dioxide</span> Chemical compound

Chlorine dioxide is a chemical compound with the formula ClO2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is usually handled as an aqueous solution. It is commonly used as a bleach. More recent developments have extended its applications in food processing and as a disinfectant.

<span class="mw-page-title-main">Potassium permanganate</span> Chemical compound

Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and MnO
4
, an intensely pink to purple solution.

Chemical decomposition, or chemical breakdown, is the process or effect of simplifying a single chemical entity into two or more fragments. Chemical decomposition is usually regarded and defined as the exact opposite of chemical synthesis. In short, the chemical reaction in which two or more products are formed from a single reactant is called a decomposition reaction.

<span class="mw-page-title-main">Iodic acid</span> Chemical compound (HIO3)

Iodic acid is a white water-soluble solid with the chemical formula HIO3. Its robustness contrasts with the instability of chloric acid and bromic acid. Iodic acid features iodine in the oxidation state +5 and is one of the most stable oxo-acids of the halogens. When heated, samples dehydrate to give iodine pentoxide. On further heating, the iodine pentoxide further decomposes, giving a mix of iodine, oxygen and lower oxides of iodine.

<span class="mw-page-title-main">18-Crown-6</span> Chemical compound

18-Crown-6 is an organic compound with the formula [C2H4O]6 and the IUPAC name of 1,4,7,10,13,16-hexaoxacyclooctadecane. It is a white, hygroscopic crystalline solid with a low melting point. Like other crown ethers, 18-crown-6 functions as a ligand for some metal cations with a particular affinity for potassium cations (binding constant in methanol: 106 M−1). The point group of 18-crown-6 is S6. The dipole moment of 18-crown-6 varies in different solvent and under different temperature. Under 25 °C, the dipole moment of 18-crown-6 is 2.76 ± 0.06 D in cyclohexane and 2.73 ± 0.02 in benzene. The synthesis of the crown ethers led to the awarding of the Nobel Prize in Chemistry to Charles J. Pedersen.

<span class="mw-page-title-main">Sodium formate</span> Chemical compound

Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder.

In chemistry, dehydrohalogenation is an elimination reaction which removes a hydrogen halide from a substrate. The reaction is usually associated with the synthesis of alkenes, but it has wider applications.

<span class="mw-page-title-main">Bromous acid</span> Chemical compound

Bromous acid is the inorganic compound with the formula of HBrO2. It is an unstable compound, although salts of its conjugate base – bromites – have been isolated. In acidic solution, bromites decompose to bromine.

The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. The typical reaction conditions used today were developed by G. A. Kraus. H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes. There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost.

<span class="mw-page-title-main">Molybdate</span> Chemical compound of the form –O–MoO₂–O–

In chemistry, a molybdate is a compound containing an oxyanion with molybdenum in its highest oxidation state of 6: O−Mo(=O)2−O. Molybdenum can form a very large range of such oxyanions, which can be discrete structures or polymeric extended structures, although the latter are only found in the solid state. The larger oxyanions are members of group of compounds termed polyoxometalates, and because they contain only one type of metal atom are often called isopolymetalates. The discrete molybdenum oxyanions range in size from the simplest MoO2−
4
, found in potassium molybdate up to extremely large structures found in isopoly-molybdenum blues that contain for example 154 Mo atoms. The behaviour of molybdenum is different from the other elements in group 6. Chromium only forms the chromates, CrO2−
4
, Cr
2
O2−
7
, Cr
3
O2−
10
and Cr
4
O2−
13
ions which are all based on tetrahedral chromium. Tungsten is similar to molybdenum and forms many tungstates containing 6 coordinate tungsten.

<span class="mw-page-title-main">Polonium dioxide</span> Chemical compound

Polonium dioxide (also known as polonium(IV) oxide) is a chemical compound with the formula PoO2. It is one of three oxides of polonium, the other two being polonium monoxide (PoO) and polonium trioxide (PoO3). It is a pale yellow crystalline solid at room temperature. Under lowered pressure (such as a vacuum), it decomposes into elemental polonium and oxygen at 500 °C. It is the most stable oxide of polonium and is an interchalcogen.

<span class="mw-page-title-main">Hexachloropropene</span> Chemical compound

Hexachloropropene is a compound of chlorine and carbon with the linear formula CCl3CCl=CCl2. It is a colourless liquid at room temperature. It is toxic for humans.

Barium permanganate is a chemical compound, with the formula Ba(MnO4)2. It forms violet to brown crystals that are sparingly soluble in water.

<span class="mw-page-title-main">Potassium hypochromate</span> Chemical compound

Potassium hypochromate is a chemical compound with the formula K3CrO4 with the unusual Cr5+ ion. This compound is unstable in water but stable in alkaline solution and was found to have a similar crystal structure to potassium hypomanganate.

Silver chlorite is a chemical compound with the formula AgClO2. This slightly yellow solid is shock sensitive and has an orthorhombic crystal structure.

<span class="mw-page-title-main">Protactinium(IV) chloride</span> Chemical compound

Protactinium(IV) chloride is an inorganic compound. It is an actinide halide, a salt composed of protactinium and chlorine. It is radioactive, and has the chemical formula of PaCl4. It is a chartreuse-coloured (yellowish-green) crystal of the tetragonal crystal system.

Lanthanum oxalate is an inorganic compound, a salt of lanthanum metal and oxalic acid with the chemical formula La
2
(C
2
O
4
)
3
.

References

  1. 1 2 Boyd, George E.; Brown, Larry Clyde (1970). "Thermal and radiolytic decomposition of anhydrous crystalline potassium chlorite". The Journal of Physical Chemistry. 74 (8): 1691–1694. doi:10.1021/j100703a006. ISSN   0022-3654.
  2. Smolentsev, A. I.; Naumov, D. Yu (2005-02-15). "Two alkali metal chlorites, LiClO2 and KClO2". Acta Crystallographica Section C: Crystal Structure Communications. 61 (2): i17–i19. doi:10.1107/S0108270104032482. ISSN   0108-2701.