Potassium methoxide

Last updated
Potassium methoxide
Methanolat-Ion.svg    K+.svg
Methoxide-3D-vdW.png
Potassium-3D.png
Names
IUPAC name
Potassium methoxide
Systematic IUPAC name
Potassium methylate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.011.579 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 212-736-1
PubChem CID
UNII
UN number 3206
  • InChI=1S/CH3O.K/c1-2;/h1H3;/q-1;+1
    Key: BDAWXSQJJCIFIK-UHFFFAOYSA-N
  • InChI=1/CH3O.K/c1-2;/h1H3;/q-1;+1
    Key: BDAWXSQJJCIFIK-UHFFFAOYAD
  • [K+].[O-]C
Properties
CH3KO
Molar mass 70.132
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H228, H251, H290, H302, H314
P210, P234, P235+P410, P240, P241, P260, P264, P270, P280, P301+P312, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P330, P363, P370+P378, P390, P404, P405, P407, P413, P420, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Potassium methoxide is the alkoxide of methanol with the counterion potassium and is used as a strong base and as a catalyst for transesterification, in particular for the production of biodiesel.

Contents

Preparation

The preparation of potassium methoxide can be achieved on the laboratory scale by the (strongly exothermic) reaction of metallic potassium and methanol upon the release of equimolar amounts of hydrogen. [1]

Kaliummethanolat aus Kalium und Methanol Kaliummethanolat aus Kalium.svg
Kaliummethanolat aus Kalium und Methanol

The reaction of metal hydrides (potassium hydride) with methanol forming potassium methoxide is also possible but less important.

Kaliummethanolat aus Kaliumhydrid und Methanol Kaliummethanolat aus Kaliumhydrid.svg
Kaliummethanolat aus Kaliumhydrid und Methanol

The exothermic reaction of potassium hydroxide with methanol leads in an equilibrium reaction to potassium methanolate and water (avoiding formation of highly inflammable hydrogen gas). In a continuous process the formed water must be removed permanently. [2]

Kaliummethanolat aus Kaliumhydroxid und Methanol Kaliummethanolat aus Kaliumhydroxid.svg
Kaliummethanolat aus Kaliumhydroxid und Methanol

The complete removal of the water is critical for the reaction conversion, due to the pronounced hygroscopy of potassium hydroxide, which contains about 10% of water. [3] The significantly higher dissolution rate of potassium hydroxide in methanol compared to sodium hydroxide is advantageous.

On a large scale, potassium methoxide is produced by decomposing potassium amalgam with methanol, which is produced by the chloralkali-electrolysis of potassium chloride by the amalgam process. Impurities of the resulting potassium methoxide in methanol with metallic mercury can be eliminated by ultrafiltration. [4] Solid potassium methoxide is obtained by distilling off the methanol. Because of their simpler production and better handling for chemical purposes solutions of potassium methanolate ( 25 to 32% by weight) are preferably used, which were continuously withdrawn from the amalgam process.

The displacement of the amalgam process by the ecologically and economically superior membrane process for the preparation of the mass chemicals sodium hydroxide and potassium hydroxide will make this standard production process for the production of alkali metal alkoxides in future useless. [5]

Properties

Potassium methoxide is a white to yellowish, hygroscopic, odorless crystalline powder which reacts violently with water forming potassium hydroxide and methanol. The aqueous solutions obtained are highly basic and have a corrosive effect. The substance is classified as an inflammable solid with a spontaneous ignition temperature of 70 °C. [6]

The human toxicity and ecotoxicity evaluation of potassium methoxide is based on the properties of the decomposition products potassium hydroxide and methanol during hydrolysis in the aqueous medium.[ citation needed ]

Use

The carbonylation of methanol with carbon monoxide to methyl formate (methyl methanoate) is catalyzed by strong bases, such as potassium methoxide. [7] [8]

The main application of potassium methoxide is use as basic transesterification catalyst in biodiesel synthesis (as a 25-32% methanolic solution). Triglycerides of vegetable and animal origin are reacted with methanol in the presence of alkali metal methanolates to form the corresponding fatty methyl esters. [9] [3]

Potassium methoxide allows a facilitated formation of fatty soaps in comparison to the (lower-priced) sodium methoxide (here potassium salts of the fatty acids from the triglycerides) and higher yields are obtained with potassium methoxide. The optimum conditions for biodiesel production from canola oil are reported as being 1.59% by weight of potassium methoxide, a reaction temperature of 50 °C and a methanol/oil ratio of 4.5: 1. The biodiesel yield is 95.8% with a fatty acid content of 0.75% by weight. [10]

Literature

See also

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Sodium hydroxide</span> Chemical compound with formula NaOH

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH.

Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. The reaction can also be accomplished with the help of other enzymes, particularly lipases.

<span class="mw-page-title-main">Potassium hydroxide</span> Inorganic compound (KOH)

Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash.

<span class="mw-page-title-main">Methoxide</span> Organic salts with a CH3O anion (charge –1)

In organic chemistry, methoxides are organic salts with a CH3O anion. They are the simplest alkoxides. Sodium methoxide and potassium methoxide have widespread use, though other metal-cation variants such as lithium methoxide, rubidium methoxide, and caesium methoxide exist as well.

Biodiesel production is the process of producing the biofuel, biodiesel, through the chemical reactions of transesterification and esterification. This involves vegetable or animal fats and oils being reacted with short-chain alcohols. The alcohols used should be of low molecular weight. Ethanol is the most used because of its low cost, however, greater conversions into biodiesel can be reached using methanol. Although the transesterification reaction can be catalyzed by either acids or bases, the base-catalyzed reaction is more common. This path has lower reaction times and catalyst cost than those acid catalysis. However, alkaline catalysis has the disadvantage of high sensitivity to both water and free fatty acids present in the oils.August 10th is international biodiesel day

<span class="mw-page-title-main">Methyl formate</span> Chemical compound

Methyl formate, also called methyl methanoate, is the methyl ester of formic acid. The simplest example of an ester, it is a colorless liquid with an ethereal odour, high vapor pressure, and low surface tension. It is a precursor to many other compounds of commercial interest.

<span class="mw-page-title-main">Methyl acetate</span> Chemical compound

Methyl acetate, also known as MeOAc, acetic acid methyl ester or methyl ethanoate, is a carboxylate ester with the formula CH3COOCH3. It is a flammable liquid with a characteristically pleasant smell reminiscent of some glues and nail polish removers. Methyl acetate is occasionally used as a solvent, being weakly polar and lipophilic, but its close relative ethyl acetate is a more common solvent being less toxic and less soluble in water. Methyl acetate has a solubility of 25% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or aqueous acids. Methyl acetate is not considered a VOC in the USA.

Fatty acid methyl esters (FAME) are a type of fatty acid ester that are derived by transesterification of fats with methanol. The molecules in biodiesel are primarily FAME, usually obtained from vegetable oils by transesterification. They are used to produce detergents and biodiesel. FAME are typically produced by an alkali-catalyzed reaction between fats and methanol in the presence of base such as sodium hydroxide, sodium methoxide or potassium hydroxide. One of the reasons for FAME use in biodiesel instead of free fatty acids is to nullify any corrosion that free fatty acids would cause to the metals of engines, production facilities and so forth. Free fatty acids are only mildly acidic, but in time can cause cumulative corrosion unlike their esters. As an improved quality, FAMEs also usually have about 12-15 units higher cetane number than their unesterified counterparts.

In chemistry, acid value is a number used to quantify the acidity of a given chemical substance. It is the quantity of base, expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.

<span class="mw-page-title-main">Xanthate</span> Salt that is a metal-thioate/O-esters of dithiocarbonate

Xanthate usually refers to a salt of xanthic acid. The formula of the salt of xanthic acid is [R−O−CS2]M+ ,. Xanthate also refers to the anion [R−O−CS2]. Xanthate also may refer to an ester of xanthic acid. The formula of xanthic acid is R−O−C(=S)−S−H, while the formula of the esters of xanthic acid is R−O−C(=S)−S−R', where R and R' are organyl groups. The salts of xanthates are also called O-organyl dithioates. The esters of xanthic acid are also called O,S-diorganyl esters of dithiocarbonic acid. The name xanthate is derived from Ancient Greek ξανθός xanthos, meaning “yellowish, golden”, and indeed most xanthate salts are yellow. They were discovered and named in 1823 by Danish chemist William Christopher Zeise. These organosulfur compounds are important in two areas: the production of cellophane and related polymers from cellulose and for extraction of certain sulphide bearing ores. They are also versatile intermediates in organic synthesis.

The Tishchenko reaction is an organic chemical reaction that involves disproportionation of an aldehyde in the presence of an alkoxide. The reaction is named after Russian organic chemist Vyacheslav Tishchenko, who discovered that aluminium alkoxides are effective catalysts for the reaction.

<span class="mw-page-title-main">Sodium formate</span> Chemical compound

Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder.

<span class="mw-page-title-main">Sodium methoxide</span> Ionic organic compound (CH3ONa)

Sodium methoxide is the simplest sodium alkoxide. With the formula CH3ONa, it is a white solid, which is formed by the deprotonation of methanol. It is a widely used reagent in industry and the laboratory. It is also a dangerously caustic base.

<span class="mw-page-title-main">Dimethyl oxalate</span> Chemical compound

Dimethyl oxalate is an organic compound with the formula (CO2CH3)2. It is the dimethyl ester of oxalic acid. Dimethyl oxalate is a colorless or white solid that is soluble in water.

<span class="mw-page-title-main">Fatty acid ester</span>

Fatty acid esters (FAEs) are a type of ester that result from the combination of a fatty acid with an alcohol. When the alcohol component is glycerol, the fatty acid esters produced can be monoglycerides, diglycerides, or triglycerides. Dietary fats are chemically triglycerides.

Saltwater soap, also called sailors' soap, is a potassium-based soap for use with seawater. Inexpensive common commercial soap will not lather or dissolve in seawater due to high levels of sodium chloride in the water. Similarly, common soap does not work as well as potassium-based soap in hard water where calcium replaces the sodium, making residual insoluble "scum" due to the insolubility of the soap residue. To be an effective cleaning agent, soap must be able to dissolve in water.

11-Aminoundecanoic acid is an organic compound with the formula H2N(CH2)10CO2H. This white solid is classified as an amine and a fatty acid. 11-Aminoundecanoic acid is a precursor to Nylon-11.

<span class="mw-page-title-main">Alkoxide</span> Conjugate base of an alcohol

In chemistry, an alkoxide is the conjugate base of an alcohol and therefore consists of an organic group bonded to a negatively charged oxygen atom. They are written as RO, where R is the organic substituent. Alkoxides are strong bases and, when R is not bulky, good nucleophiles and good ligands. Alkoxides, although generally not stable in protic solvents such as water, occur widely as intermediates in various reactions, including the Williamson ether synthesis. Transition metal alkoxides are widely used for coatings and as catalysts.

References

  1. A.R. Ronzio; W.B. Cook. "4-Amino-2,6-dimethylpyrimidine". Organic Syntheses . 24. doi:10.15227/orgsyn.024.0006.
  2. Chimtek Engineering: Potassium Methylate Production Technology, retrieved 12 August 2015.
  3. 1 2 J. Ruwwe (2008), "Metal alkoxides as catalysts for the biodiesel production" (PDF), Chim. Oggi Chem. Today, vol. 26, no. 1, pp. 26–28
  4. EP 2656905,M. Horn, B. Helpap, M. Thiel, M. Neumann,"Entquickung von Lösungen durch Ultrafiltration",published 2013-10-30, assigned to Evonik Degussa GmbH
  5. ICF International: Study on EU Implementation of the Minamata Convention on Mercury, retrieved 12 August 2015.
  6. Evonik Industries, GPS Safety Summary, Potassium Methylate, retrieved 12 August 2015.
  7. B.N. Pattanaik (2013), "The advances in processes and catalysts for the production of methyl formate by methanol carbonylation – a review", IJCPT, vol. 3, no. 2, pp. 55–70, ISSN   2277-4807
  8. US 20140148614,D. Schneider, K.-D. Mohl, M. Schäfer, J. Paschold, J.H. Teles, S. Rittinger,"Process for preparing methyl formate by reaction of methanol with carbon monoxide in the presence of a catalyst system comprising alkali metal formate and alkali metal alkoxide",published 2014-05-29, assigned to BASF SE
  9. G. Knothe; J. Krahl; J. Van Gerpen, eds. (2010), The Biodiesel Handbook (2nd ed.), AOCS Press, ISBN   978-1-893997-62-2
  10. A. Singh; B. He; J. Thompson; J. Van Gerpen (2006), "Process optimization of biodiesel production using alkaline catalysts" (PDF), Appl. Eng. Agric., vol. 22, no. 4, pp. 597–600, archived from the original (PDF) on 2015-11-23, retrieved 2017-02-13