PowerPC e5500

Last updated

The PowerPC e5500 is a 64-bit Power ISA-based microprocessor core from Freescale Semiconductor. The core implements most [1] of the core of the Power ISA v.2.06 with hypervisor support, but not AltiVec. It has a four issue, seven-stage out-of-order pipeline with a double precision FPU, three Integer units, 32/32 KB data and instruction L1 caches, 512 KB private L2 cache per core and up to 2 MB shared L3 cache. Speeds range up to 2.5 GHz, and the core is designed to be highly configurable via the CoreNet fabric and meet the specific needs of embedded applications with features like multi-core operation and interface for auxiliary application processing units (APU).

Contents

Design

The e5500 is based on the e500mc core and adds some new instructions introduced in the Power ISA 2.06 specification, namely some byte- and bit-level acceleration; Parity, Population count, Bit permute and Compare byte. The FPU is taken straight from the PowerPC e600 core, which is a classic fully pipelined dual precision IEEE 754 unit running at full core speed and supports conversion between 64-bit floats and integers, effectively twice as fast as the FPU in e500mc. The e5500 also introduces an enhanced branch prediction unit with an 8-entry link stack.

The e5500 core is the first 64-bit Power ISA core designed solely by Freescale and was introduced at Freescale Technology Forum in June 2010. Simulated models were available in July 2010, hard samples in late 2010 and full scale manufacturing the second half of 2011. Freescale have used the e700 and NG-64 monikers to refer to a very similarly specced core since 2004, but they are not the same product. [2]

Products

e5500 powers the high-performance QorIQ P5 system on a chip (SoC) family which share the common naming scheme: "P50x0". BAE Systems has built a radiation hardened computer based on the e5500 core for devices in space. [3]

See also

Related Research Articles

AltiVec is a single-precision floating point and integer SIMD instruction set designed and owned by Apple, IBM, and Freescale Semiconductor — the AIM alliance. It is implemented on versions of the PowerPC processor architecture, including Motorola's G4, IBM's G5 and POWER6 processors, and P.A. Semi's PWRficient PA6T. AltiVec is a trademark owned solely by Freescale, so the system is also referred to as Velocity Engine by Apple and VMX by IBM and P.A. Semi.

PowerPC G4 is a designation formerly used by Apple and Eyetech to describe a fourth generation of 32-bit PowerPC microprocessors. Apple has applied this name to various processor models from Freescale, a former part of Motorola. Motorola and Freescale's proper name of this family of processors is PowerPC 74xx.

The PowerPC 400 family is a line of 32-bit embedded RISC processor cores based on the PowerPC or Power ISA instruction set architectures. The cores are designed to fit inside specialized applications ranging from system-on-a-chip (SoC) microcontrollers, network appliances, application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs) to set-top boxes, storage devices and supercomputers.

POWER3 1998 family of microprocessors by IBM

The POWER3 is a microprocessor, designed and exclusively manufactured by IBM, that implemented the 64-bit version of the PowerPC instruction set architecture (ISA), including all of the optional instructions of the ISA such as instructions present in the POWER2 version of the POWER ISA but not in the PowerPC ISA. It was introduced on 5 October 1998, debuting in the RS/6000 43P Model 260, a high-end graphics workstation. The POWER3 was originally supposed to be called the PowerPC 630 but was renamed, probably to differentiate the server-oriented POWER processors it replaced from the more consumer-oriented 32-bit PowerPCs. The POWER3 was the successor of the P2SC derivative of the POWER2 and completed IBM's long-delayed transition from POWER to PowerPC, which was originally scheduled to conclude in 1995. The POWER3 was used in IBM RS/6000 servers and workstations at 200 MHz. It competed with the Digital Equipment Corporation (DEC) Alpha 21264 and the Hewlett-Packard (HP) PA-8500.

R4000

The R4000 is a microprocessor developed by MIPS Computer Systems that implements the MIPS III instruction set architecture (ISA). Officially announced on 1 October 1991, it was one of the first 64-bit microprocessors and the first MIPS III implementation. In the early 1990s, when RISC microprocessors were expected to replace CISC microprocessors such as the Intel i486, the R4000 was selected to be the microprocessor of the Advanced Computing Environment (ACE), an industry standard that intended to define a common RISC platform. ACE ultimately failed for a number of reasons, but the R4000 found success in the workstation and server markets.

R5000

The R5000 is a 64-bit, little endian (mipsel) superscalar, in-order execution 2-issue design microprocessor, that implements the MIPS IV instruction set architecture (ISA) developed by Quantum Effect Design (QED) in 1996. The project was funded by MIPS Technologies, Inc (MTI), also the licensor. MTI then licensed the design to Integrated Device Technology (IDT), NEC, NKK, and Toshiba. The R5000 succeeded the QED R4600 and R4700 as their flagship high-end embedded microprocessor. IDT marketed its version of the R5000 as the 79RV5000, NEC as VR5000, NKK as the NR5000, and Toshiba as the TX5000. The R5000 was sold to PMC-Sierra when the company acquired QED. Derivatives of the R5000 are still in production today for embedded systems.

PowerQUICC is the name for several PowerPC- and Power ISA-based microcontrollers from Freescale Semiconductor. They are built around one or more PowerPC cores and the Communications Processor Module which is a separate RISC core specialized in such tasks such as I/O, communications, ATM, security acceleration, networking and USB. Many components are System-on-a-chip designs tailor-made for embedded applications.

The PowerPC 600 family was the first family of PowerPC processors built. They were designed at the Somerset facility in Austin, Texas, jointly funded and staffed by engineers from IBM and Motorola as a part of the AIM alliance. Somerset was opened in 1992 and its goal was to make the first PowerPC processor and then keep designing general purpose PowerPC processors for personal computers. The first incarnation became the PowerPC 601 in 1993, and the second generation soon followed with the PowerPC 603, PowerPC 604 and the 64-bit PowerPC 620.

The PowerPC e200 is a family of 32-bit Power ISA microprocessor cores developed by Freescale for primary use in automotive and industrial control systems. The cores are designed to form the CPU part in system-on-a-chip (SoC) designs with speed ranging up to 600 MHz, thus making them ideal for embedded applications.

The PowerPC e600 is a family of 32-bit PowerPC microprocessor cores developed by Freescale for primary use in high performance system-on-a-chip (SoC) designs with speed ranging over 2 GHz, thus making them ideal for high performance routing and telecommunications applications. The e600 is the continuation of the PowerPC 74xx design.

The PowerPC e500 is a 32-bit microprocessor core from Freescale Semiconductor. The core is compatible with the older PowerPC Book E specification as well as the Power ISA v.2.03. It has a dual issue, seven-stage pipeline with FPUs, 32/32 KiB data and instruction L1 caches and 256, 512 or 1024 KiB L2 frontside cache. Speeds range from 533 MHz up to 1.5 GHz, and the core is designed to be highly configurable and meet the specific needs of embedded applications with features like multi-core operation interface for auxiliary application processing units (APU).

PowerPC e300

The PowerPC e300 is a family of 32-bit PowerPC microprocessor cores developed by Freescale for primary use in system-on-a-chip (SoC) designs with speed ranging up to 800 MHz, thus making them ideal for embedded applications.

QorIQ

QorIQ is a brand of ARM-based and Power ISA-based communications microprocessors from NXP Semiconductors. It is the evolutionary step from the PowerQUICC platform, and initial products were built around one or more e500mc cores and came in five different product platforms, P1, P2, P3, P4, and P5, segmented by performance and functionality. The platform keeps software compatibility with older PowerPC products such as the PowerQUICC platform. In 2012 Freescale announced ARM-based QorIQ offerings beginning in 2013.

ARM Cortex-M Group of 32-bit RISC processor cores

The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by Arm Holdings. These cores are optimized for low-cost and energy-efficient integrated circuits, which have been embedded in tens of billions of consumer devices. Though they are most often the main component of microcontroller chips, sometimes they are embedded inside other types of chips too. The Cortex-M family consists of Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33, Cortex-M35P, Cortex-M55. The Cortex-M4 / M7 / M33 / M35P / M55 cores have an FPU silicon option, and when included in the silicon these cores are sometimes known as "Cortex-Mx with FPU" or "Cortex-MxF", where 'x' is the core variant.

The PowerPC e6500 is a multithreaded 64-bit Power ISA-based microprocessor core from Freescale Semiconductor. e6500 will power the entire range of QorIQ AMP Series system on a chip (SoC) processors which share the common naming scheme: "Txxxx". Hard samples, manufactured on a 28 nm process, available in early 2012 with full production later in 2012.

The Power Processing Element (PPE) comprises a Power Processing Unit (PPU) and a 512 KB L2 cache. In most instances the PPU is used in a PPE. The PPU is a 64-bit dual-threaded in-order PowerPC 2.02 microprocessor core designed by IBM for use primarily in the game consoles PlayStation 3 and Xbox 360, but has also found applications in high performance computing in supercomputers such as the record setting IBM Roadrunner.

Since 1985, many processors implementing some version of the MIPS architecture have been designed and used widely.

Power ISA Computer instruction set architecture

Power ISA is a reduced instruction set computer (RISC) instruction set architecture (ISA) currently developed by the OpenPOWER Foundation, led by IBM. It was originally developed by IBM and the now-defunct Power.org industry group. Power ISA is an evolution of the PowerPC ISA, created by the mergers of the core PowerPC ISA and the optional Book E for embedded applications. The merger of these two components in 2006 was led by Power.org founders IBM and Freescale Semiconductor.

References

  1. See Table 3-1. "Unsupported Power ISA 2.06 Instructions" of the e5500 Core Reference Manual (needs registration on freescale.com)
  2. What’s Up with 64-bit Embedded Computing?
  3. BAE Systems Taps Freescale's Power Architecture Technology to Produce Processors for Space Missions