Power cable

Last updated

A power cable is an electrical cable, an assembly of one or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of electrical power. Power cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or exposed. Power cables that are bundled inside thermoplastic sheathing and that are intended to be run inside a building are known as NM-B (nonmetallic sheathed building cable).

Contents

A USB-C power cable. USB-C cable 2017 A.jpg
A USB-C power cable.

Flexible power cables are used for portable devices, mobile tools, and machinery.

History

The first power distribution system developed by Thomas Edison in 1882 in New York City used copper rods, wrapped in jute and placed in rigid pipes filled with a bituminous compound. [1] Although vulcanized rubber had been patented by Charles Goodyear in 1844, it was not applied to cable insulation until the 1880s, when it was used for lighting circuits. [2] Rubber-insulated cable was used for 11,000-volt circuits in 1897 installed for the Niagara Falls power project.

Mass-impregnated paper-insulated medium voltage cables were commercially practical by 1895. During World War II several varieties of synthetic rubber and polyethylene insulation were applied to cables. [3]

Typical residential and office construction in North America has gone through several technologies:

Construction

Modern power cables come in a variety of sizes, materials, and types, each particularly adapted to its uses. [6] Large single insulated conductors are also sometimes called power cables in the industry. [7]

Cables consist of three major components: conductors, insulation, protective jacket. The makeup of individual cables varies according to application. The construction and material are determined by three main factors:

Cables for direct burial or for exposed installations may also include metal armor in the form of wires spiraled around the cable, or a corrugated tape wrapped around it. The armor may be made of steel or aluminum, and although connected to earth ground is not intended to carry current during normal operation. Electrical power cables are sometimes installed in raceways, including electrical conduit and cable trays, which may contain one or more conductors. When it is intended to be used inside a building, nonmetallic sheathed building cable (NM-B) consists of two or more wire conductors (plus a grounding conductor) enclosed inside a thermoplastic insulation sheath that is heat-resistant. It has advantages over armored building cable because it is lighter, easier to handle, and its sheathing is easier to work with. [8]

Power cables use stranded copper or aluminum conductors, although small power cables may use solid conductors in sizes of up to 1/0. (For a detailed discussion on copper cables, see: Copper wire and cable.). The cable may include uninsulated conductors used for the circuit neutral or for ground (earth) connection. The grounding conductor connects the equipment's enclosure/chassis to ground for protection from electric shock. These uninsulated versions are known are bare conductors or tinned bare conductors. The overall assembly may be round or flat. Non-conducting filler strands may be added to the assembly to maintain its shape. Filler materials can be made in non-hydroscopic versions if required for the application.

Special purpose power cables for overhead applications are often bound to a high strength alloy, ACSR, or alumoweld messenger. This cable is called aerial cable or pre-assembled aerial cable (PAC). PAC can be ordered unjacketed, however, this is less common in recent years due to the low added cost of supplying a polymeric jacket. For vertical applications the cable may include armor wires on top of the jacket, steel or Kevlar. The armor wires are attached to supporting plates periodically to help support the weight of the cable. A supporting plate may be included on each floor of the building, tower, or structure. This cable would be called an armored riser cable. For shorter vertical transitions (perhaps 30–150 feet) an unarmored cable can be used in conjunction with basket (Kellum) grips or even specially designed duct plugs.

Material specification for the cable's jacket will often consider resistance to water, oil, sunlight, underground conditions, chemical vapors, impact, fire, or high temperatures. In nuclear industry applications the cable may have special requirements for ionizing radiation resistance. Cable materials for a transit application may be specified not to produce large amounts of smoke if burned (low smoke zero halogen). Cables intended for direct burial must consider damage from backfill or dig-ins. HDPE or polypropylene jackets are common for this use. Cables intended for subway (underground vaults) may consider oil, fire resistance, or low smoke as a priority. Few cables these days still employ an overall lead sheath. However, some utilities may still install paper insulated lead covered cable in distribution circuits. Transmission or submarine cables are more likely to use lead sheaths. However, lead is in decline and few manufacturers exist today to produce such items. When cables must run where exposed to mechanical damage (industrial sites), they may be protected with flexible steel tape or wire armor, which may also be covered by a water-resistant jacket.

A hybrid cable can include conductors for control signals or may also include optical fibers for data.

Higher voltages

For circuits operating at or above 2,000 volts between conductors, a conductive shield should surround the conductor's insulation. This equalizes electrical stress on the cable insulation. This technique was patented by Martin Hochstadter in 1916; [2] the shield is sometimes called a Hochstadter shield. Aside from the semi conductive ("semicon") insulation shield, there will also be a conductor shield. The conductor shield may be semi conductive (usually) or non conducting. The purpose of the conductor shield is similar to the insulation shield: it is a void filler and voltage stress equalizer.

To drain off stray voltage, a metallic shield will be placed over the "semicon." This shield is intended to "make safe" the cable by pulling the voltage on the outside of the insulation down to zero (or at least under the OSHA limit of 50 volts). This metallic shield can consist of a thin copper tape, concentric drain wires, flat straps, lead sheath, or other designs. The metallic shields of a cable are connected to earth ground at the ends of the cable, and possibly locations along the length if voltage rise during faults would be dangerous. Multi-point grounding is the most common way to ground the cable's shield. Some special applications require shield breaks to limit circulating currents during the normal operations of the circuit. Circuits with shield breaks could be single or multi point grounded. Special engineering situations may require cross bonding.

Liquid or gas filled cables are still employed in distribution and transmission systems today. Cables of 10 kV or higher may be insulated with oil and paper, and are run in a rigid steel pipe, semi-rigid aluminum or lead sheath. For higher voltages the oil may be kept under pressure to prevent formation of voids that would allow partial discharges within the cable insulation.

A high-voltage cable designed for 400 kV. The large conductor in the center carries the current, smaller conductors on the outside act as a shield to equalize the voltage stress in the thick polyethylene insulation layer. Hochspannungskabel 400kV Querschnitt.JPG
A high-voltage cable designed for 400 kV. The large conductor in the center carries the current, smaller conductors on the outside act as a shield to equalize the voltage stress in the thick polyethylene insulation layer.

Liquid filled cables are known for extremely long service lives with little to no outages. Unfortunately, oil leaks into soil and bodies of water are of grave concern and maintaining a fleet of the needed pumping stations is a drain on the O+M budget of most power utilities. Pipe type cables are often converted to solid insulation circuit at the end of their service life despite a shorter expected service life.

Modern high-voltage cables use polyethylene or other polymers, including XLPE for insulation. They require special techniques for jointing and terminating, see High-voltage cable.

Flexibility of cables (stranding class)

All electrical cables are somewhat flexible, allowing them to be shipped to installation sites wound on reels, drums or hand coils. Flexibility is an important factor in determining the appropriate stranding class of the cable as it directly affects the minimum bending radius. Power cables are generally stranding class A, B, or C. These classes allow for the cable to be trained into a final installed position where the cable will generally not be disturbed. Class A, B, and C offer more durability, especially when pulling cable, and are generally cheaper. Power utilities generally order Class B stranded wire for primary and secondary voltage applications. At times, a solid conductor medium voltage cable can be used when flexibility is not a concern but low cost and water blocking are prioritized.

Applications requiring a cable to be moved repeatedly, such as for portable equipment, more flexible cables called "cords" or "flex" are used (stranding class G-M). Flexible cords contain fine stranded conductors, rope lay or bunch stranded. They feature overall jackets with appropriate amounts of filler materials to improve their flexibility, trainability, and durability. Heavy duty flexible power cords such as those feeding a mine face cutting machine are carefully engineered — their life is measured in weeks. Very flexible power cables are used in automated machinery, robotics, and machine tools. See power cord and extension cable for further description of flexible power cables. Other types of flexible cable include twisted pair, extensible, coaxial, shielded, and communication cable.

An X-ray cable is a special type of flexible high-voltage cable.

See also

Related Research Articles

<span class="mw-page-title-main">Insulator (electricity)</span> Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

<span class="mw-page-title-main">Wire</span> Single, usually cylindrical, flexible strand or bar or rod of metal

A wire is a flexible, round, bar of metal.

<span class="mw-page-title-main">Electrical cable</span> Assembly of one or more wires running side by side or bundled

An electrical cable is an assembly of one or more wires running side by side or bundled, which is used as an electrical conductor to carry electric current.

<span class="mw-page-title-main">Coaxial cable</span> Electrical cable type with concentric inner conductor, insulator, and conducting shield

Coaxial cable, or coax, is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ; many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.

<span class="mw-page-title-main">Electrical conductor</span> Object or material which allows the flow of electric charge with little energy loss

In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively charged electrons generates electric current, positively charged holes, and positive or negative ions in some cases.

Electrical wiring in North America follows the regulations and standards applicable at the installation location. It is also designed to provide proper function, and is also influenced by history and traditions of the location installation.

<span class="mw-page-title-main">Electrical wiring</span> Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

Electrical wiring in the United Kingdom is commonly understood to be an electrical installation for operation by end users within domestic, commercial, industrial, and other buildings, and also in special installations and locations, such as marinas or caravan parks. It does not normally cover the transmission or distribution of electricity to them.

<span class="mw-page-title-main">Overhead power line</span> Above-ground structure for bulk transfer and distribution of electricity

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors suspended by towers or poles. Since the surrounding air provides good cooling, insulation along long passages and allows optical inspection, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy.

<span class="mw-page-title-main">Shielded cable</span> Electric cable with metal jacket (shield) to prevent magnetic interference

A shielded cable or screened cable is an electrical cable that has a common conductive layer around its conductors for electromagnetic shielding. This shield is usually covered by an outermost layer of the cable. Common types of cable shielding can most broadly be categorized as foil type, contraspiralling wire strands or both. A longitudinal wire may be necessary with dielectric spiral foils to short out each turn.

<span class="mw-page-title-main">Speaker wire</span> Electronics component

Speaker wire is used to make the electrical connection between loudspeakers and audio amplifiers. Modern speaker wire consists of two or more electrical conductors individually insulated by plastic or, less commonly, rubber. The two wires are electrically identical, but are marked to identify the correct audio signal polarity. Most commonly, speaker wire comes in the form of zip cord.

<span class="mw-page-title-main">Mineral-insulated copper-clad cable</span> Type of fire-resistant electrical cable

Mineral-insulated copper-clad cable is a variety of electrical cable made from copper conductors inside a copper sheath, insulated by inorganic magnesium oxide powder. The name is often abbreviated to MICC or MI cable, and colloquially known as pyro. A similar product sheathed with metals other than copper is called mineral-insulated metal-sheathed (MIMS) cable.

A thermoplastic-sheathed cable (TPS) consists of a toughened outer sheath of polyvinyl chloride (PVC) thermoplastic, covering one or more individual annealed copper conductors, themselves insulated with PVC. This type of wiring is commonly used for residential and light commercial construction in many countries. The flat version of the cable, with two insulated conductors and an uninsulated earth conductor, is referred to as twin and earth. In mainland Europe, a round equivalent is more common.

<span class="mw-page-title-main">Knob-and-tube wiring</span> Type of electrical wiring

Knob-and-tube wiring is an early standardized method of electrical wiring in buildings, in common use in North America from about 1880 to the 1930s. It consisted of single-insulated copper conductors run within wall or ceiling cavities, passing through joist and stud drill-holes via protective porcelain insulating tubes, and supported along their length on nailed-down porcelain knob insulators. Where conductors entered a wiring device such as a lamp or switch, or were pulled into a wall, they were protected by flexible cloth insulating sleeving called loom. The first insulation was asphalt-saturated cotton cloth, then rubber became common. Wire splices in such installations were twisted together for good mechanical strength, then soldered and wrapped with rubber insulating tape and friction tape, or made inside metal junction boxes.

<span class="mw-page-title-main">Magnet wire</span> Coated wire for construction of coils

Magnet wire or enameled wire is a copper or aluminium wire coated with a very thin layer of insulation. It is used in the construction of transformers, inductors, motors, generators, speakers, hard disk head actuators, electromagnets, electric guitar pickups, and other applications that require tight coils of insulated wire.

<span class="mw-page-title-main">Pothead</span> High-voltage electrical connection device

A pothead is a type of insulated electrical terminal used for transitioning between overhead line and underground high-voltage cable or for connecting overhead wiring to equipment like transformers. Its name comes from the process of potting or encapsulation of the conductors inside the terminal's insulating bushing.

Tri-rated cable is a high temperature, flame retardant electrical wire designed for use inside electrical equipment.

<span class="mw-page-title-main">High-voltage cable</span> Cable used for electric power transmission at high voltage

A high-voltage cable is a cable used for electric power transmission at high voltage. A cable includes a conductor and insulation. Cables are considered to be fully insulated. This means that they have a fully rated insulation system that will consist of insulation, semi-con layers, and a metallic shield. This is in contrast to an overhead line, which may include insulation but not fully rated for operating voltage. High-voltage cables of differing types have a variety of applications in instruments, ignition systems, and alternating current (AC) and direct current (DC) power transmission. In all applications, the insulation of the cable must not deteriorate due to the high-voltage stress, ozone produced by electric discharges in air, or tracking. The cable system must prevent contact of the high-voltage conductor with other objects or persons, and must contain and control leakage current. Cable joints and terminals must be designed to control the high-voltage stress to prevent the breakdown of the insulation.

<span class="mw-page-title-main">Copper conductor</span> Electrical wire or other conductor made of copper

Copper has been used in electrical wiring since the invention of the electromagnet and the telegraph in the 1820s. The invention of the telephone in 1876 created further demand for copper wire as an electrical conductor.

<span class="mw-page-title-main">Electrical conduit</span> Tube used to protect and route electrical wiring in a building or structure

An electrical conduit is a tube used to protect and route electrical wiring in a building or structure. Electrical conduit may be made of metal, plastic, fiber, or fired clay. Most conduit is rigid, but flexible conduit is used for some purposes.

References

  1. A. J. Pansini (1978). Undergrounding electric lines. ISBN   0-8104-0827-9.
  2. 1 2 Underground Systems Reference Book. Edison Electric Institute. 1957. OCLC   1203459.
  3. R. M. Black (1983). The History of Electric Wires and Cables. Peter Pergrinus, London. ISBN   0-86341-001-4.
  4. "10 Wiring Problems Solved | Electrical | Plumbing, HVAC & Electrical | This Old House - 12". Archived from the original on 2014-10-06. Retrieved 2014-10-03.
  5. "The True Story Behind Aluminum Wiring – Part One". 21 March 2015.
  6. Terrell Croft and Wilford Summers (ed), American Electricans' Handbook, Eleventh Edition, McGraw Hill, New York (1987) ISBN   0-07-013932-6, sections 2-13 through 2-84
  7. Donald G. Fink and H. Wayne Beaty, Standard Handbook for Electrical Engineers, Eleventh Edition, McGraw-Hill, New York, 1978, ISBN   0-07-020974-X pg. 18-85
  8. "Nonmetallic Building Cable". Granger. Retrieved 11 September 2020.