Precision beekeeping

Last updated

Precision beekeeping (PB) (also known as precision apiculture) is an apiary management strategy based on the monitoring of individual bee colonies to minimize resource consumption and maximize the productivity of bees. [1] It can be considered a branch of precision agriculture. Similar to it, implementation of Precision Beekeeping can also be split into three phases: data collection, data analysis and application. During the data collection phase, measurements from bee colonies and the environment are collected. The data analysis phase draws conclusions regarding bee colony behaviour and activity trends based on measurement data, predefined models and expert knowledge. In the application phase, decisions are made and actions undertaken based on data analysis for improving apiary performance.

One of the main objectives of PB is to implement real time and on-line tools for continuous monitoring of bee colonies during their life and production stage using the automatic, automated and information technology based solutions, without exposing the bees to avoidable stress and waste of resources.

Bee colony monitoring

Various technologies can be applied for monitoring the bee colony and implementation of data collection phase. [2] The data collection process in PB can be classified into three groups [3] 1) apiary-level parameters (meteorological parameters and video observation); 2) colony-level parameters (temperature, humidity, gas content, sound, video, vibration of hive and weight); 3) individual bee-related parameters (the number of incoming/outgoing bees, the number of bees in the hive entrance area).

Temperature measurements of bee colonies have the longest history. Nowadays, bee colony temperature measurements seem to be the simplest and cheapest way to monitor bee colonies. The low costs of data collection, processing and data transfer of temperature measurement systems facilitate application of temperature measurements in beekeeping. Monitoring of the bee colony temperature can be performed using various methods and technologies: 1) Manual temperature measurements, measurements by different loggers and iButtons; 2) Wired sensor networks; 3) Wireless sensor networks; 4) Infrared imaging. Temperature data can help to identify such colony states as: 1) death; 2) swarming; 3) brood rearing; 4) broodless state.

Weight monitoring of the colony can be used to identify: [4] 1) occurrence of nectar flow during the foraging season; 2) consumption of food during non-foraging periods; 3) the occurrence of swarming events through a decrease in the hive weight; 4) estimation of the number of foragers. There are two ways of measuring the weight of the colony: 1) automatic measurements, which can be made using industrial scales; 2) manual weight measurements.

Audio signals and audio processing techniques can be applied to estimate bee behaviour. [5] Many devices and methods have been developed for sound analysis but they are not widely applied in industrial beekeeping. So far, the solutions seem to work only in the hands of researchers. The reason for this may be the large stochastic component in the buzz of a colony and the complexity of sound interpretation. As well means of a simple transducer secured to the outside wall of a hive, a set of statistically independent instantaneous vibration signals of honey bees can be identified and monitored in time using a fully automated and non-invasive method. [6]

Related Research Articles

<span class="mw-page-title-main">Beehive</span> Structure housing a honey bee colony

A beehive is an enclosed structure in which some honey bee species of the subgenus Apis live and raise their young. Though the word beehive is used to describe the nest of any bee colony, scientific and professional literature distinguishes nest from hive. Nest is used to discuss colonies that house themselves in natural or artificial cavities or are hanging and exposed. The term hive is used to describe an artificial/man-made structure to house a honey bee nest. Several species of Apis live in colonies. But for honey production, the western honey bee and the eastern honey bee are the main species kept in hives.

<span class="mw-page-title-main">Beekeeping</span> Human care of honey bees

Beekeeping is the maintenance of bee colonies, commonly in man-made beehives. Honey bees in the genus Apis are the most commonly kept species but other honey producing bees such as Melipona stingless bees are also kept. Beekeepers keep bees to collect honey and other products of the hive: beeswax, propolis, bee pollen, and royal jelly. Other sources of beekeeping income include pollination of crops, raising queens, and production of package bees for sale. Bee hives are kept in an apiary or "bee yard".

<span class="mw-page-title-main">Apiary</span> Place containing beehives of honey bees

An apiary is a location where beehives of honey bees are kept. Apiaries come in many sizes and can be rural or urban depending on the honey production operation. Furthermore, an apiary may refer to a hobbyist's hives or those used for commercial or educational usage. It can also be a wall-less, roofed structure, similar to a gazebo which houses hives, or an enclosed structure with an opening that directs the flight path of the bees.

<span class="mw-page-title-main">Buckfast bee</span> Breed of honey bee

The Buckfast bee is a breed of honey bee, a cross of many subspecies and their strains, developed by Brother Adam, who was in charge of beekeeping from 1919 at Buckfast Abbey in Devon in the United Kingdom. Breeding of the Buckfast bee is now done by breeders throughout Europe belonging to the Federation of European Buckfast Beekeepers (G.D.E.B.). This organization maintains a pedigree for Buckfast bees, originating from the time of Brother Adam.

<span class="mw-page-title-main">Queen bee</span> Egg-laying individual in a bee colony

A queen bee is typically an adult, mated female (gyne) that lives in a colony or hive of honey bees. With fully developed reproductive organs, the queen is usually the mother of most, if not all, of the bees in the beehive. Queens are developed from larvae selected by worker bees and specially fed in order to become sexually mature. There is normally only one adult, mated queen in a hive, in which case the bees will usually follow and fiercely protect her.

<span class="mw-page-title-main">Bee pollen</span> Ball of pollen gathered by worker honeybees

Bee pollen, also known as bee bread and ambrosia, is a ball or pellet of field-gathered flower pollen packed by worker honeybees, and used as the primary food source for the hive. It consists of simple sugars, protein, minerals and vitamins, fatty acids, and a small percentage of other components. Bee pollen is stored in brood cells, mixed with saliva, and sealed with a drop of honey. Bee pollen is harvested as food for humans and marketed as having various, but yet unproven, health benefits.

Robbing is a term used in beekeeping. Bees from one beehive will try to rob honey from another hive.

<span class="mw-page-title-main">Waggle dance</span> Honey bees particular figure-eight dance

Waggle dance is a term used in beekeeping and ethology for a particular figure-eight dance of the honey bee. By performing this dance, successful foragers can share information about the direction and distance to patches of flowers yielding nectar and pollen, to water sources, or to new nest-site locations with other members of the colony.

<span class="mw-page-title-main">American foulbrood</span> Bee disease

American foulbrood, caused by the spore-forming bacterium Paenibacillus larvae, is a highly infectious honey bee brood disease. It is the most widespread and destructive of the honey bee brood diseases. It is globally distributed and burning of infected colonies is often considered as the only effective measure to prevent spreading of the disease.

<i>Apis florea</i> Species of bee

The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.

<i>Apis koschevnikovi</i> Species of bee

Apis koschevnikovi, Koschevnikov's honey bee, is a species of honey bee which inhabits Malaysian and Indonesian Borneo, where it lives sympatrically with other honey bee species such as Apis cerana.

The Maltese honey bee, Apis mellifera ruttneri, is a subspecies of the western honey bee, endemic to the Maltese islands which are situated in the Mediterranean Sea.

<span class="mw-page-title-main">Western honey bee</span> European honey bee

The western honey bee or European honey bee is the most common of the 7–12 species of honey bees worldwide. The genus name Apis is Latin for "bee", and mellifera is the Latin for "honey-bearing" or "honey carrying", referring to the species' production of honey.

<span class="mw-page-title-main">Beekeeping in New Zealand</span>

Beekeeping in New Zealand is reported to have commenced in 1839 with the importing of two skep hives by Mary Bumby, a missionary. It has since become an established industry as well a hobby activity.

<span class="mw-page-title-main">Colony collapse disorder</span> Aspect of apiculture

Colony collapse disorder (CCD) is an abnormal phenomenon that occurs when the majority of worker bees in a honey bee colony disappear, leaving behind a queen, plenty of food, and a few nurse bees to care for the remaining immature bees. While such disappearances have occurred sporadically throughout the history of apiculture, and have been known by various names, the syndrome was renamed colony collapse disorder in early 2007 in conjunction with a drastic rise in reports of disappearances of western honey bee colonies in North America. Beekeepers in most European countries had observed a similar phenomenon since 1998, especially in Southern and Western Europe; the Northern Ireland Assembly received reports of a decline greater than 50%. The phenomenon became more global when it affected some Asian and African countries as well.

<i>Apis cerana</i> Species of insect

Apis cerana, the eastern honey bee, Asiatic honey bee or Asian honey bee, is a species of honey bee native to South, Southeast and East Asia. This species is the sister species of Apis koschevnikovi and both are in the same subgenus as the western (European) honey bee, Apis mellifera. A. cerana is known to live sympatrically along with Apis koschevnikovi within the same geographic location. Apis cerana colonies are known for building nests consisting of multiple combs in cavities containing a small entrance, presumably for defense against invasion by individuals of another nest. The diet of this honey bee species consists mostly of pollen and nectar, or honey. Moreover, Apis cerana is known for its highly social behavior, reflective of its classification as a type of honey bee.

<span class="mw-page-title-main">Apiary Laboratory</span> Building at the University of Massachusetts Amherst, US

The Apiary Laboratory, more often referred to as the Apiary, is a research laboratory at the University of Massachusetts Amherst. Originally built for the study of honey bees and apiculture, today it is primarily used to study native pollinator species and the chemicals and pathogens impacting their populations. This academic building is unique in that it is credited as being the first in the United States to be erected exclusively for the teaching of beekeeping.

<i>Melipona beecheii</i> Species of bee

Melipona beecheii is a species of eusocial stingless bee. It is native to Central America from the Yucatán Peninsula in the north to Costa Rica in the south. M. beecheii was cultivated in the Yucatán Peninsula starting in the pre-Columbian era by the ancient Maya civilization. The Mayan name for M. beecheii is xunan kab, which translates roughly to "regal lady bee". M. beecheii serves as the subject of various Mayan religious ceremonies.

Honey bee starvation is a problem for bees and beekeepers. Starvation may be caused by unfavorable weather, disease, long distance transportation or depleting food reserve. Over-harvesting of honey is the foremost cause for scarcity as bees are not left with enough of a honey store, though weather, disease, and disturbance can also cause problems. Backyard beekeepers face more colony losses in the winter than in the summer, but for commercial beekeepers there is not much variation in loss by season. Starvation may be avoided by effective monitoring of hives and disease prevention measures. Starvation can amplify the toxic effect of pesticides bees are exposed to.

References

  1. Zacepins, A., Stalidzans, E., Meitalovs, J. (2012) Application of information technologies in precision apiculture. In: Proceedings of the 13th International Conference on Precision Agriculture (ICPA 2012), Indianapolis, USA.
  2. Meikle, W. G.; Holst, N. (2014-06-27). "Application of continuous monitoring of honeybee colonies" (PDF). Apidologie. 46 (1): 10–22. doi: 10.1007/s13592-014-0298-x . ISSN   0044-8435.
  3. Zacepins, Aleksejs; Brusbardis, Valters; Meitalovs, Jurijs; Stalidzans, Egils (2015-02-01). "Challenges in the development of Precision Beekeeping". Biosystems Engineering. 130: 60–71. doi:10.1016/j.biosystemseng.2014.12.001.
  4. Meikle, William G.; Rector, Brian G.; Mercadier, Guy; Holst, Niels (2008-11-01). "Within-day variation in continuous hive weight data as a measure of honey bee colony activity". Apidologie. 39 (6): 694–707. doi: 10.1051/apido:2008055 . ISSN   0044-8435.
  5. Eskov, E. K.; Toboev, V. A. (2010-06-04). "Analysis of statistically homogeneous fragments of acoustic noises generated by insect colonies". Biophysics. 55 (1): 92–103. doi:10.1134/S0006350910010161. ISSN   0006-3509. S2CID   21843828.
  6. Bencsik, Martin; Le Conte, Yves; Reyes, Maritza; Pioz, Maryline; Whittaker, David; Crauser, Didier; Simon Delso, Noa; Newton, Michael I. (2015-11-18). "Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle". PLOS ONE. 10 (11): e0141926. Bibcode:2015PLoSO..1041926B. doi: 10.1371/journal.pone.0141926 . PMC   4651543 . PMID   26580393.