Primer dimer

Last updated

A primer dimer (PD) is a potential by-product in the polymerase chain reaction (PCR), a common biotechnological method. As its name implies, a PD consists of two primer molecules that have attached (hybridized) to each other because of strings of complementary bases in the primers. As a result, the DNA polymerase amplifies the PD, leading to competition for PCR reagents, thus potentially inhibiting amplification of the DNA sequence targeted for PCR amplification. In quantitative PCR, PDs may interfere with accurate quantification.

Contents

Mechanism of formation

Primer dimer is formed and amplified in a three-step process Primer dimers formation En.PNG
Primer dimer is formed and amplified in a three-step process

A primer dimer is formed and amplified in three steps. In the first step, two primers anneal at their respective 3' ends (step I in the figure). If this construct is stable enough, the DNA polymerase will bind and extend the primers according to the complementary sequence (step II in the figure). An important factor contributing to the stability of the construct in step I is a high GC-content at the 3' ends and length of the overlap. The third step occurs in the next cycle, when a single strand of the product of step II is used as a template to which fresh primers anneal leading to synthesis of more PD product. [1]

Detection

Primer dimers may be visible after gel electrophoresis of the PCR product. PDs in ethidium bromide-stained gels are typically seen as a 30-50 base-pair (bp) band or smear of moderate to high intensity and distinguishable from the band of the target sequence, which is typically longer than 50 bp.

In quantitative PCR, PDs may be detected by melting curve analysis with intercalating dyes, such as SYBR Green I, a nonspecific dye for detection of double-stranded DNA. Because they usually consist of short sequences, the PDs denature at lower temperature than the target sequence and hence can be distinguished by their melting-curve characteristics.

Preventing primer-dimer formation

One approach to prevent PDs consists of physical-chemical optimization of the PCR system, i.e. changing the concentrations of primers, magnesium chloride, nucleotides, ionic strength and temperature of the reaction. This method is somewhat limited by the physical-chemical characteristics that also determine the efficiency of amplification of the target sequence in the PCR. Therefore, reducing PDs formation may also result in reduced PCR efficiency. To overcome this limitation, other methods aim to reduce the formation of PDs only, including primer design, and use of different PCR enzyme systems or reagents.[ citation needed ]

Primer-design software

Primer-design software uses algorithms that check for the potential of DNA secondary structure formation and annealing of primers to itself or within primer pairs. Physical parameters that are taken into account by the software are potential self-complementarity and GC content of the primers; similar melting temperatures of the primers; and absence of secondary structures, such as stem-loops, in the DNA target sequence. [2]

Hot-start PCR

Because primers are designed to have low complementarity to each other, they may anneal (step I in the figure) only at low temperature, e.g. room temperature, such as during the preparation of the reaction mixture. Although DNA polymerases used in PCR are most active around 70 °C, they have some polymerizing activity also at lower temperatures, which can cause DNA synthesis from primers after annealing to each other. [3] Several methods have been developed to prevent PDs formation until the reaction reaches working temperature (60-70 °C), and these include initial inhibition of the DNA polymerase, or physical separation of reaction components reaction until the reaction mixture reaches the higher temperatures. These methods are referred to as hot-start PCR.

Wax: in this method the enzyme is spatially separated from the reaction mixture by wax that melts when the reaction reaches high temperature. [4]

Slow release of magnesium: DNA polymerase requires magnesium ions for activity, [5] so the magnesium is chemically separated from the reaction by binding to a chemical compound, and is released into the solution only at high temperature [6]

Non-covalent binding of inhibitor: in this method a peptide, antibody [7] or aptamer [8] are non-covalently bound to the enzyme at low temperature and inhibit its activity. After an incubation of 1–5 minutes at 95 °C, the inhibitor is released and the reaction starts.

Cold-sensitive Taq polymerase: is a modified DNA polymerase with almost no activity at low temperature. [9]

Chemical modification: in this method a small molecule is covalently bound to the side chain of an amino acid in the active site of the DNA polymerase. The small molecule is released from the enzyme by incubation of the reaction mixture for 10–15 minutes at 95 °C. Once the small molecule is released, the enzyme is activated. [10]

Structural modifications of primers

Another approach to prevent or reduce PD formation is by modifying the primers so that annealing with themselves or each other does not cause extension.

HANDS (Homo-Tag Assisted Non-Dimer System [11] ): a nucleotide tail, complementary to the 3' end of the primer is added to the 5' end of the primer. Because of the close proximity of the 5' tail it anneals to the 3' end of the primer. The result is a stem-loop primer that excludes annealing involving shorter overlaps, but permits annealing of the primer to its fully complementary sequence in the target.

Chimeric primers: some DNA bases in the primer are replaced with RNA bases, creating a chimeric sequence. The melting temperature of a chimeric sequence with another chimeric sequence is lower than that of chimeric sequence with DNA. This difference enables setting the annealing temperature such that the primer will anneal to its target sequence, but not to other chimeric primers. [12]

Blocked-cleavable primers: a method known as RNase H-dependent PCR (rhPCR), [13] utilizes a thermostable RNase HII to remove a blocking group from the PCR primers at high temperature. This RNase HII enzyme displays almost no activity at low temperature, making the removal of the block only occur at high temperature. The enzyme also possess inherent primer:template mismatch discrimination, resulting in additional selection against primer-dimers.

Self-Avoiding molecular recognition systems :also known as SAMRS, [14] eliminating primer dimers by introducing nucleotide analogues T*, A*, G* and C* into the primer. The SAMRS DNA could bind to natural DNA, but not to other members of the same SAMRS species. For example, T* could bind to A but not A*, and A* could bind to T but not T*. Thus, through careful design, [15] primers build from SAMRS could avoid primer-primer interactions and allowing sensitive SNP detection as well as multiplex PCR.

Preventing signal acquisition from primer dimers

While the methods above are designed to reduce PD formation, another approach aims to minimize signal generated from PDs in quantitative PCR. This approach is useful as long as there are few PDs formed and their inhibitory effect on product accumulation is minor.

Four steps PCR: used when working with nonspecific dyes, such as SYBR Green I. It is based on the different length, and hence, different melting temperature of the PDs and the target sequence. In this method the signal is acquired below the melting temperature of the target sequence, but above the melting temperature of the PDs. [16]

Sequence-specific probes: TaqMan and molecular beacon probes generate signal only in the presence of their target (complementary) sequence, and this enhanced specificity precludes signal acquisition (but not possible inhibitory effects on product accumulation) from PDs.

Related Research Articles

<span class="mw-page-title-main">Complementary DNA</span> Single-stranded DNA synthesized from RNA

In genetics, complementary DNA (cDNA) is DNA synthesized from a single-stranded RNA template in a reaction catalyzed by the enzyme reverse transcriptase. cDNA is often used to express a specific protein in a cell that does not normally express that protein, or to sequence or quantify mRNA molecules using DNA based methods. cDNA that codes for a specific protein can be transferred to a recipient cell for expression, often bacterial or yeast expression systems. cDNA is also generated to analyze transcriptomic profiles in bulk tissue, single cells, or single nuclei in assays such as microarrays, qPCR, and RNA-seq.

<span class="mw-page-title-main">Polymerase chain reaction</span> Laboratory technique to multiply a DNA sample for study

The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA sufficiently to enable detailed study. PCR was invented in 1983 by American biochemist Kary Mullis at Cetus Corporation. Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.

<span class="mw-page-title-main">Primer (molecular biology)</span> Short strand of RNA or DNA that serves as a starting point for DNA synthesis

A primer is a short single-stranded nucleic acid used by all living organisms in the initiation of DNA synthesis. A synthetic primer may also be referred to as an oligo, short for oligonucleotide. DNA polymerase enzymes are only capable of adding nucleotides to the 3’-end of an existing nucleic acid, requiring a primer be bound to the template before DNA polymerase can begin a complementary strand. DNA polymerase adds nucleotides after binding to the RNA primer and synthesizes the whole strand. Later, the RNA strands must be removed accurately and replace them with DNA nucleotides forming a gap region known as a nick that is filled in using an enzyme called ligase. The removal process of the RNA primer requires several enzymes, such as Fen1, Lig1, and others that work in coordination with DNA polymerase, to ensure the removal of the RNA nucleotides and the addition of DNA nucleotides. Living organisms use solely RNA primers, while laboratory techniques in biochemistry and molecular biology that require in vitro DNA synthesis usually use DNA primers, since they are more temperature stable. Primers can be designed in laboratory for specific reactions such as polymerase chain reaction (PCR). When designing PCR primers, there are specific measures that must be taken into consideration, like the melting temperature of the primers and the annealing temperature of the reaction itself. Moreover, the DNA binding sequence of the primer in vitro has to be specifically chosen, which is done using a method called basic local alignment search tool (BLAST) that scans the DNA and finds specific and unique regions for the primer to bind.

Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.

Helicase-dependent amplification (HDA) is a method for in vitro DNA amplification that takes place at a constant temperature.

Cycling probe technology (CPT) is a molecular biological technique for detecting specific DNA sequences. CPT operates under isothermal conditions. In some applications, CPT offers an alternative to PCR. However, unlike PCR, CPT does not generate multiple copies of the target DNA itself, and the amplification of the signal is linear, in contrast to the exponential amplification of the target DNA in PCR. CPT uses a sequence specific chimeric probe which hybridizes to a complementary target DNA sequence and becomes a substrate for RNase H. Cleavage occurs at the RNA internucleotide linkages and results in dissociation of the probe from the target, thereby making it available for the next probe molecule. Integrated electrokinetic systems have been developed for use in CPT.

<span class="mw-page-title-main">Random amplification of polymorphic DNA</span>

Random amplified polymorphic DNA (RAPD), pronounced "rapid", is a type of polymerase chain reaction (PCR), but the segments of DNA that are amplified are random. The scientist performing RAPD creates several arbitrary, short primers, then proceeds with the PCR using a large template of genomic DNA, hoping that fragments will amplify. By resolving the resulting patterns, a semi-unique profile can be gleaned from an RAPD reaction.

<i>Taq</i> polymerase Thermostable form of DNA polymerase I used in polymerase chain reaction

Taq polymerase is a thermostable DNA polymerase I named after the thermophilic eubacterial microorganism Thermus aquaticus, from which it was originally isolated by Chien et al. in 1976. Its name is often abbreviated to Taq or Taq pol. It is frequently used in the polymerase chain reaction (PCR), a method for greatly amplifying the quantity of short segments of DNA.

<span class="mw-page-title-main">Real-time polymerase chain reaction</span> Laboratory technique of molecular biology

A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR, not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively.

The overlap extension polymerase chain reaction is a variant of PCR. It is also referred to as Splicing by overlap extension / Splicing by overhang extension (SOE) PCR. It is used assemble multiple smaller double stranded DNA fragments into a larger DNA sequence. OE-PCR is widely used to insert mutations at specific points in a sequence or to assemble custom DNA sequence from smaller DNA fragments into a larger polynucleotide.

SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms (SNPs) between members of a species. It is a form of genotyping, which is the measurement of more general genetic variation. SNPs are one of the most common types of genetic variation. An SNP is a single base pair mutation at a specific locus, usually consisting of two alleles. SNPs are found to be involved in the etiology of many human diseases and are becoming of particular interest in pharmacogenetics. Because SNPs are conserved during evolution, they have been proposed as markers for use in quantitative trait loci (QTL) analysis and in association studies in place of microsatellites. The use of SNPs is being extended in the HapMap project, which aims to provide the minimal set of SNPs needed to genotype the human genome. SNPs can also provide a genetic fingerprint for use in identity testing. The increase of interest in SNPs has been reflected by the furious development of a diverse range of SNP genotyping methods.

Nucleic acid sequence-based amplification, commonly referred to as NASBA, is a method in molecular biology which is used to produce multiple copies of single stranded RNA. NASBA is a two-step process that takes RNA and anneals specially designed primers, then utilizes an enzyme cocktail to amplify it.

The polymerase chain reaction (PCR) is a commonly used molecular biology tool for amplifying DNA, and various techniques for PCR optimization which have been developed by molecular biologists to improve PCR performance and minimize failure.

Polymerase cycling assembly is a method for the assembly of large DNA oligonucleotides from shorter fragments. The process uses the same technology as PCR, but takes advantage of DNA hybridization and annealing as well as DNA polymerase to amplify a complete sequence of DNA in a precise order based on the single stranded oligonucleotides used in the process. It thus allows for the production of synthetic genes and even entire synthetic genomes.

<span class="mw-page-title-main">History of polymerase chain reaction</span>

The history of the polymerase chain reaction (PCR) has variously been described as a classic "Eureka!" moment, or as an example of cooperative teamwork between disparate researchers. Following is a list of events before, during, and after its development:

The versatility of polymerase chain reaction (PCR) has led to modifications of the basic protocol being used in a large number of variant techniques designed for various purposes. This article summarizes many of the most common variations currently or formerly used in molecular biology laboratories; familiarity with the fundamental premise by which PCR works and corresponding terms and concepts is necessary for understanding these variant techniques.

COLD-PCR is a modified polymerase chain reaction (PCR) protocol that enriches variant alleles from a mixture of wildtype and mutation-containing DNA. The ability to preferentially amplify and identify minority alleles and low-level somatic DNA mutations in the presence of excess wildtype alleles is useful for the detection of mutations. Detection of mutations is important in the case of early cancer detection from tissue biopsies and body fluids such as blood plasma or serum, assessment of residual disease after surgery or chemotherapy, disease staging and molecular profiling for prognosis or tailoring therapy to individual patients, and monitoring of therapy outcome and cancer remission or relapse. Common PCR will amplify both the major (wildtype) and minor (mutant) alleles with the same efficiency, occluding the ability to easily detect the presence of low-level mutations. The capacity to detect a mutation in a mixture of variant/wildtype DNA is valuable because this mixture of variant DNAs can occur when provided with a heterogeneous sample – as is often the case with cancer biopsies. Currently, traditional PCR is used in tandem with a number of different downstream assays for genotyping or the detection of somatic mutations. These can include the use of amplified DNA for RFLP analysis, MALDI-TOF genotyping, or direct sequencing for detection of mutations by Sanger sequencing or pyrosequencing. Replacing traditional PCR with COLD-PCR for these downstream assays will increase the reliability in detecting mutations from mixed samples, including tumors and body fluids.

Hot start PCR is a modified form of conventional polymerase chain reaction (PCR) that reduces the presence of undesired products and primer dimers due to non-specific DNA amplification at room temperatures. Many variations and modifications of the PCR procedure have been developed in order to achieve higher yields; hot start PCR is one of them. Hot start PCR follows the same principles as the conventional PCR - in that it uses DNA polymerase to synthesise DNA from a single stranded template. However, it utilizes additional heating and separation methods, such as inactivating or inhibiting the binding of Taq polymerase and late addition of Taq polymerase, to increase product yield as well as provide a higher specificity and sensitivity. Non-specific binding and priming or formation of primer dimers are minimized by completing the reaction mix after denaturation. Some ways to complete reaction mixes at high temperatures involve modifications that block DNA polymerase activity in low temperatures, use of modified deoxyribonucleotide triphosphates (dNTPs), and the physical addition of one of the essential reagents after denaturation.

Multiple Annealing and Looping Based Amplification Cycles (MALBAC) is a quasilinear whole genome amplification method. Unlike conventional DNA amplification methods that are non-linear or exponential, MALBAC utilizes special primers that allow amplicons to have complementary ends and therefore to loop, preventing DNA from being copied exponentially. This results in amplification of only the original genomic DNA and therefore reduces amplification bias. MALBAC is “used to create overlapped shotgun amplicons covering most of the genome”. For next generation sequencing, MALBAC is followed by regular PCR which is used to further amplify amplicons.

<span class="mw-page-title-main">RNase H-dependent PCR</span> Laboratory technique

RNase H-dependent PCR (rhPCR) is a modification of the standard PCR technique. In rhPCR, the primers are designed with a removable amplification block on the 3’ end. Amplification of the blocked primer is dependent on the cleavage activity of a hyperthermophilic archaeal Type II RNase H enzyme during hybridization to the complementary target sequence. This RNase H enzyme possesses several useful characteristics that enhance the PCR. First, it has very little enzymatic activity at low temperature, enabling a “hot start PCR” without modifications to the DNA polymerase. Second, the cleavage efficiency of the enzyme is reduced in the presence of mismatches near the RNA residue. This allows for reduced primer dimer formation, detection of alternative splicing variants, ability to perform multiplex PCR with higher numbers of PCR primers, and the ability to detect single-nucleotide polymorphisms.

References

  1. Alberts; et al. (2017). Molecular Biology of the Cell (6th ed.). Garland Science. pp. 708–711.
  2. The primer design page of Leiden University Medical Center
  3. Patel, Ewing (2008). Polymerase Chain Reaction: Techniques and Applications. Scientific Press. pp. 595–599.
  4. Chou, Quin; Russell, Marion; Birch, David E.; Raymond, Jonathan; Bloch, Will (1992). "Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications". Nucleic Acids Research. 20 (7): 1717–23. doi:10.1093/nar/20.7.1717. PMC   312262 . PMID   1579465.
  5. Yang, Linjing; Arora, Karunesh; Beard, William A.; Wilson, Samuel H.; Schlick, Tamar (2004). "Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly". Journal of the American Chemical Society. 126 (27): 8441–53. doi:10.1021/ja049412o. PMID   15238001.
  6. US Patent application number 2007/0254327
  7. US Patent number 5338671
  8. US Patent number 6183967
  9. US Patent number 6214557
  10. US Patent number 5677152
  11. Brownie, Jannine; Shawcross, Susan; Theaker, Jane; Whitcombe, David; Ferrie, Richard; Newton, Clive; Little, Stephen (1997). "The elimination of primer-dimer accumulation in PCR". Nucleic Acids Research. 25 (16): 3235–41. doi:10.1093/nar/25.16.3235. PMC   146890 . PMID   9241236.
  12. "Chimeric primers for improved nucleic acid amplification reactions". Patent Lens .
  13. Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM, Behlke MA, Walder JA (August 2011). "RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers". BMC Biotechnology. 11: 80. doi: 10.1186/1472-6750-11-80 . PMC   3224242 . PMID   21831278.
  14. Hoshika S, Chen F, Leal NA, Benner SA (2020). "Artificial Generic Systems: Self-Avoiding ENA in PCR and Multiplexed PCR". Angew. Chem. 122 (32): 5686–5689. doi:10.1002/ange.201001977. PMC   6027612 . PMID   20586087.
  15. Yang ZY, Le JT, Hutter D, Bradley KM, Overton BR, McLendon C, Benner SA (2020). "Elimilating primer dimers and improving SNP detection using self-avoiding molecular recognition systems". Biology Methods and Protocols. 5 (1): bpaa004. doi:10.1093/biomethods/bpaa004. PMC   7200914 . PMID   32395633.
  16. Four steps PCR

"Online software for primer dimer prediction". OligoAnalyzer 3.1. Integrated DNA Technologies.
"Primer design. What is the primer-dimer?". YouTube video. Archived from the original on 2021-12-20.