Priming (agriculture)

Last updated

Nano seed priming in botany and agriculture is a form of seed planting preparation in which the seeds are pre-soaked in nanoparticle solution. Seeds are considered to be an important part of crop life cycle as it influences the propagation of critical phases like germination and dormancy. Seed priming before sowing is considered to be one of the promising ways to provide value-added solutions to maximize the natural potential of seed to set the plant for maximum yield potential with respect to both quality and quantity. Positive effect on the shoot and root growth of seedlings of wheat (Triticum aestivum L.) when treated with iron-oxide nanoparticles. This innovative cost-effective and user-friendly method of biofortification has proven to increase grain iron deposition upon harvesting. Hence, the intervention of nanotechnology in terms of seed priming could be an economical and user-friendly smart farming approach to increase the nutritive value of the grains in an eco-friendly manner. [1]

Contents

Priming is not an extremely widely used method. In general, most kinds of seeds experimented with so far have shown an overall advantage over seeds that are not primed. Many have shown a faster emergence time (the time it takes for seeds to rise above the surface of the soil), a higher emergence rate (the number of seeds that make it to the surface), and better growth, suggesting that the head-start helps them get a good root system down early and grow faster. This method can be useful to farmers because it saves them the money and time spent for fertilizers, re-seeding, and weak plants.

Mechanism of Priming

During priming, a seed is exposed to stimuli, which trigger a series of interconnected biochemical reactions in it, including the creation of chemicals that promote growth, the activation of enzymes, the metabolism of germination inhibitors, and the repair of cell damage. [2]

Related Research Articles

<span class="mw-page-title-main">Wheat</span> Genus of grass cultivated for the grain

Wheat is a grass widely cultivated for its seed, a cereal grain that is a worldwide staple food. The many species of wheat together make up the genus Triticum ; the most widely grown is common wheat. The archaeological record suggests that wheat was first cultivated in the regions of the Fertile Crescent around 9600 BC. Botanically, the wheat kernel is a caryopsis, a type of fruit.

<span class="mw-page-title-main">Sowing</span> Planting of seeds or other propagules in the ground for germination

Sowing is the process of planting seeds. An area or object that has had seeds planted in it will be described as a sowed or sown area.

<span class="mw-page-title-main">Rye</span> Species of grain

Rye is a grass grown extensively as a grain, a cover crop and a forage crop. It is a member of the wheat tribe (Triticeae) and is closely related to both wheat and barley. Rye grain is used for flour, bread, beer, crispbread, some whiskeys, some vodkas, and animal fodder. It can also be eaten whole, either as boiled rye berries or by being rolled, similar to rolled oats.

<span class="mw-page-title-main">Triticale</span> Hybrid wheat/rye crop

Triticale is a hybrid of wheat (Triticum) and rye (Secale) first bred in laboratories during the late 19th century in Scotland and Germany. Commercially available triticale is almost always a second-generation hybrid, i.e., a cross between two kinds of primary (first-cross) triticales. As a rule, triticale combines the yield potential and grain quality of wheat with the disease and environmental tolerance of rye. Only recently has it been developed into a commercially viable crop. Depending on the cultivar, triticale can more or less resemble either of its parents. It is grown mostly for forage or fodder, although some triticale-based foods can be purchased at health food stores and can be found in some breakfast cereals.

<span class="mw-page-title-main">Germination</span> Process by which an organism grows from a spore or seed

Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, ferns, bacteria, and the growth of the pollen tube from the pollen grain of a seed plant.

<span class="mw-page-title-main">Perennial</span> Plant that lives for more than two years

In botany, a perennial plant or simply perennial is a plant that lives more than two years. The term is often used to differentiate a plant from shorter-lived annuals and biennials. The term is also widely used to distinguish plants with little or no woody growth from trees and shrubs, which are also technically perennials. Notably, it is estimated that 94% of plant species fall under the category of perennials, underscoring the prevalence of plants with lifespans exceeding two years in the botanical world.

<span class="mw-page-title-main">Spelt</span> Species of grain

Spelt, also known as dinkel wheat or hulled wheat, is a species of wheat that has been cultivated since approximately 5000 BCE.

<span class="mw-page-title-main">Seed drill</span> Seed-sowing agricultural device

A seed drill is a device used in agriculture that sows seeds for crops by positioning them in the soil and burying them to a specific depth while being dragged by a tractor. This ensures that seeds will be distributed evenly.

<i>Aegilops</i> Genus of grasses

Aegilops is a genus of Eurasian and North American plants in the grass family, Poaceae. They are known generally as goatgrasses. Some species are known as invasive weeds in parts of North America.

<span class="mw-page-title-main">Taxonomy of wheat</span> Classification of wheat

During 10,000 years of cultivation, numerous forms of wheat, many of them hybrids, have developed under a combination of artificial and natural selection. This diversity has led to much confusion in the naming of wheats. Genetic and morphological characteristics of wheat influence its classification; many common and botanical names of wheat are in current use.

<i>Aegilops cylindrica</i> Species of grass

Aegilops cylindrica, also known as jointed goatgrass, is an annual grass seed native to Southern Europe and Russia that is part of the tribe Triticeae, along with wheat and some other cereals. It is not native to North America, however it has become a serious issue as a weed since it was introduced in the late 19th century. Due to its relation to winter wheat, it is very difficult to control. Not only are the grains similar in shape and size to the seeds of winter wheat, making it difficult to remove through grain cleaning methods, the shared genetics mean that no registered herbicides are available to single out jointed goatgrass while leaving winter wheat unharmed. This poses problems for farmers who have to suffer through reduced yields and poorer quality winter wheat.

<i>Fusarium culmorum</i> Fungal disease, head blight of wheat

Fusarium culmorum is a fungal plant pathogen and the causal agent of seedling blight, foot rot, ear blight, stalk rot, common root rot and other diseases of cereals, grasses, and a wide variety of monocots and dicots. In coastal dunegrass, F. culmorum is a nonpathogenic symbiont conferring both salt and drought tolerance to the plant.

Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.

<i>Gibberella zeae</i> Species of fungus

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

<i>Tilletia caries</i> Species of fungus

Tilletia caries is a basidiomycete that causes common bunt of wheat. The common names of this disease are stinking bunt of wheat and stinking smut of wheat. This pathogen infects wheat, rye, and various other grasses. T. caries is economically and agriculturally important because it reduces both the wheat yield and grain quality.

<i>Gibberella fujikuroi</i> Species of fungus

Gibberella fujikuroi is a fungal plant pathogen. It causes bakanae disease in rice seedlings.

<span class="mw-page-title-main">Biofortification</span> Breeding crops for higher nutritional value

Biofortification is the idea of breeding crops to increase their nutritional value. This can be done either through conventional selective breeding, or through genetic engineering. Biofortification differs from ordinary fortification because it focuses on making plant foods more nutritious as the plants are growing, rather than having nutrients added to the foods when they are being processed. This is an important improvement on ordinary fortification when it comes to providing nutrients for the rural poor, who rarely have access to commercially fortified foods. As such, biofortification is seen as an upcoming strategy for dealing with deficiencies of micronutrients in low and middle-income countries. In the case of iron, the WHO estimated that biofortification could help cure the 2 billion people suffering from iron deficiency-induced anemia.

<i>Thinopyrum intermedium</i> Species of flowering plant

Thinopyrum intermedium, known commonly as intermediate wheatgrass, is a sod-forming perennial grass in the Triticeae tribe of Pooideae native to Europe and Western Asia. It is part of a group of plants commonly called wheatgrasses because of the similarity of their seed heads or ears to common wheat. However, wheatgrasses generally are perennial, while wheat is an annual. It has gained the Royal Horticultural Society's Award of Garden Merit as an ornamental.

Wilhelm Knop was a German agrochemist and co-founder of modern water culture. Alongside Julius von Sachs, he identified nitrogen, phosphorus, sulfur, potassium, calcium, magnesium, and iron as essential elements for plant nutrition. Knop and von Sachs pioneered the use of standardized nutrient solutions in experimental plant physiology.

<i>Striga hermonthica</i> Species of flowering plant

Striga hermonthica, commonly known as purple witchweed or giant witchweed, is a hemiparasitic plant that belongs to the family Orobanchaceae. It is devastating to major crops such as sorghum and rice. In sub-Saharan Africa, apart from sorghum and rice, it also infests maize, pearl millet, and sugar cane.

References

  1. Sundaria, Naveen; Singh, Manoj; Upreti, Prateek; P. Chauhan, Ravendra; P. Jaiswal, J; Kumar, Anil (31 May 2018). "Seed Priming with Iron Oxide Nanoparticles Triggers Iron Acquisition and Biofortification in Wheat (Triticum aestivum L.) Grains". Journal of Plant Growth Regulation. 38: 122–131. doi:10.1007/s00344-018-9818-7. ISSN   0721-7595. S2CID   90428807.
  2. Ibrahim, E. A. (2016). "Seed priming to alleviate salinity stress in germinating seeds". Journal of plant physiology. 15 (192): 38–46 via NCBI.